
1

Workload-Balanced Pruning for
Sparse Spiking Neural Networks

Ruokai Yin, Youngeun Kim, Student Member, IEEE,
Yuhang Li, Abhishek Moitra, Student Member, IEEE,

Nitin Satpute, Anna Hambitzer, Member, IEEE,
and Priyadarshini Panda, Member, IEEE

Abstract—Pruning for Spiking Neural Networks (SNNs) has
emerged as a fundamental methodology for deploying deep
SNNs on resource-constrained edge devices. Though the existing
pruning methods can provide extremely high weight sparsity
for deep SNNs, the high weight sparsity brings a workload
imbalance problem. Specifically, the workload imbalance happens
when a different number of non-zero weights are assigned to
hardware units running in parallel, which results in low hardware
utilization and thus imposes longer latency and higher energy
costs. In preliminary experiments, we show that sparse SNNs
(∼98% weight sparsity) can suffer as low as ∼59% utilization.
To alleviate the workload imbalance problem, we propose u-
Ticket, where we monitor and adjust the weight connections of
the SNN during Lottery Ticket Hypothesis (LTH) based pruning,
thus guaranteeing the final ticket gets optimal utilization when
deployed onto the hardware. Experiments indicate that our u-
Ticket can guarantee up to 100% hardware utilization, thus
reducing up to 76.9% latency and 63.8% energy cost compared
to the non-utilization-aware LTH method.1

Index Terms—Spiking Neural Networks, Pruning, Neuromor-
phic Computing, Sparse Neural Networks

I. INTRODUCTION

Spiking Neural Networks (SNNs) have gained tremendous
attention towards ultra-low-power machine learning [1]. SNNs
leverage spatio-temporal information of unary spike data to
achieve energy-efficient processing in resource-constrained
edge devices [2], [3]. However, in the case of large-scale
tasks such as image classification, the model size of SNNs
significantly increases. Unfortunately, edge devices typically
have limited on-chip memory, rendering large-scale SNN de-
ployment unpractical. To this end, recent works have proposed
various unstructured SNN pruning techniques to achieve high
weight sparsity in SNNs [4]–[11].

Although unstructured pruning manages to compress the
SNN models into the available memory resources, sparse
SNNs encounter a workload-imbalance problem [12]. The
workload-imbalance problem comes from the conventional
weight stationary dataflow [13] adopted in sparse accelerators
[14]–[16]. In weight stationary dataflow, filters are divided
into several groups and kept stationary inside processing
elements (PEs) for filter reuse. However, different filter groups
inevitably have different densities of non-zero weights due to
the random weight connections from the unstructured pruning.
As a result, different PEs end up with unbalanced workloads.

1Code is available at https://github.com/Intelligent-Computing-Lab-Yale/u-
Ticket-Pruning

1514

Fig. 1. Comparison between u-Ticket and state-of-the-art workload balance
methods. Overall, u-Ticket recovers the PE utilization up to 100% for
extremely sparse networks with 98% weight sparsity (here, we consider VGG-
16). Please note that u-Ticket does not introduce any hardware area overhead,
and thus is the best fit for SNNs (↑: the higher is the better, ↓: the lower is
the better).

Since all PEs run in parallel, PEs with fewer workloads must
wait for the PE with the largest workload. This results in low
utilization and imposes idle cycles, which increases the latency
and leakage energy.

To address the workload-imbalance problem, various meth-
ods have been proposed in the prior sparse accelerator designs.
However, they cannot be efficiently applied to SNNs for
the following reasons. (1) Requiring extra hardware: The
prior methods require extra hardware (e.g., deep FIFOs or
permuting units) [14], [15], [17]–[19] to balance the work-
loads. For instance, applying the hardware-based (FIFOs [14]
and permuting networks [15]) workload balancing methods to
SNNs require approximately 18% and 13% of extra chip area
(see Fig. 1). Consequentially, the improvements in PE utiliza-
tion are at the cost of additional hardware resources, which
should be avoided for SNNs whose running environments
are typically resource-constrained edge devices. (2) Limited
to low sparsity: As shown in Fig. 1, the solutions from
prior sparse accelerators [14], [15] only work on low sparsity
(roughly 60% and 35% on VGG-16), which is not sufficient for
SNNs’ extremely low-power edge deployment. Moreover, the
workload-imbalance problem naturally becomes more difficult
to solve at high sparsity regimes. Hence, the exploration of
workload balancing for extremely sparse networks (> 95%
weight sparsity) is missing in prior works. Considering the
above-mentioned problems, we need an SNN-friendly solution
to address the workload imbalance.

To this end, we propose u-Ticket, an iterative workload-
balanced pruning method for SNNs that can effectively achieve

https://github.com/Intelligent-Computing-Lab-Yale/u-Ticket-Pruning
https://github.com/Intelligent-Computing-Lab-Yale/u-Ticket-Pruning

2

Step4: Re-initialization

Recover/Remove
connections based

on PE workload

(Utilization)

Pruning
Step2:

Training

Step3:

Step1:

Fig. 2. Illustration of the concept of the proposed u-Ticket. Our u-Ticket
consists of training (step1), pruning (step2), adjusting weight connections
based on workload (step3), and re-initialization (step4). We repeat these steps
for multiple rounds. Please note that the standard LTH method consists of
training (step1), pruning (step2), and re-initialization (step4), which does not
consider the utilization of the pruned SNNs.

high sparsity of weights and simultaneously minimize the
workload imbalance problem. Our method is based on Lottery
Ticket Hypothesis (LTH) [20], which states that sub-networks
with similar accuracy can be found in over-parameterized
networks by repeating training-pruning-initialization stages.
Different from the standard LTH method [11] where the
pruned networks are naively used for the next round, we either
remove or recover weight connections to balance workloads
across all PEs before sending the networks to re-initialization
(see Fig. 2).

Compared to prior workload-balancing methods (see Fig.
1), the u-Ticket approach improves PE utilization by up to
100% (70% for [14] and 92% for [15]) while maintaining
filter sparsity of 98% (60% for [14] and 35% for [15]), at iso-
accuracy with the standard LTH-based pruning baseline [11].
Furthermore, since our method balances the workload during
the pruning process, u-Ticket does not incur any additional
hardware overhead for deployment.

We summarize the key contributions as follows:
1) We propose u-Ticket, which discovers highly sparse

SNNs with optimal PE utilization. The discovered sparse
SNN model achieves a similar level of accuracy, weight
sparsity, and spike sparsity with the standard LTH base-
line [11] while improving the utilization up to 100%.

2) By balancing the workload, u-Ticket reduces the running
latency and energy cost by up to 76.9% and 63.8%,
respectively, compared to the standard LTH method.

3) We extend the prior sparse accelerator [14] and propose
an energy estimation model for sparse SNNs.

4) To validate the proposed u-Ticket, we conduct exper-
iments on two representative deep architectures (i.e.,
VGG-16 [21] and ResNet-19 [22]) across four public
datasets including CIFAR10 [23], Fashion-MNIST [24],
SVHN [25], and CIFAR100 [23].

II. RELATED WORKS

A. Pruning for Spiking Neural Networks

Recently, there has been a significant growing interest in
exploring spiking neural networks (SNNs) as the new gener-
ation of low-power deep neural networks under the context
of edge machine learning [26], [27]. One of the main groups
of SNN research focuses on the compression of the size of
the networks, which is very important on edge deployment,

0

0

0

0 0

0

0

0

0

00
0 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0

0

0

0

0
0

0
0

0
0

PE0

PE1

PE2

PE3

4 cycles

2 cycles

2 cycles

1 cycles

W2,7 W3,7

W0,5

W0,2

W1,1 W2,0 W3,0 W4,0

Sparsity: 83%

Total: 4 cycles

0

0

0

0

0 0

0

0

0

0

00
0 0

0

0
0

0
0

0
0

0
0

0
0

0
0 0

0

0

0

0

0
0

0
0

0
0

2 cycles

2 cycles

2 cycles

2 cycles

W2,7 W3,7

W0,5

W0,2

W2,0 W4,0

Sparsity: 83%

Total: 2 cycles

0

0

0

0

W2,3

W5,4

Utilization: 37.5% Utilization: 100%

W2,0

W3,0

W1,1

W4,0

W0,2 W0,5

W2,7

W3,7

W0,5

W5,4

W4,0

W2,0 W2,3

W0,2

W3,7

W2,7

Fig. 3. Example utilization and latency resulted from imbalance and balanced
workload under the same model sparsity. With the unstructured pruning, non-
zero weights will have a random distribution across four groups, thus leading
to unbalanced workloads across PEs as shown on the left side (PE0 has four
weights assigned, while PE1 and PE2 only have one).

where the memory resources are usually very limited. This
work mainly focuses on one of the most popular network
compression techniques: pruning.

Pruning is a widely studied technique in the field of neural
network compression that aims to reduce the size of a neural
network by removing unnecessary connections or weights
while maintaining its accuracy. Researchers have extensively
studied the pruning for SNNs to meet the limited memory
resources on the edge [4]–[11].

In [4], [5], the weight connections are removed if their
magnitudes are below a pre-set threshold. In [8], the weight
connections are removed according to the magnitude of the
gradients. In [6], the ADMM optimization method is adopted
to prune the SNNs. Both [7] and [9] propose adaptive weight
pruning for SNNs. The unsupervised online weight pruning is
proposed by [7] for SNNs, while [9] proposes the supervised
training for the pruning masks for SNNs. A more bio-plausible
pruning method for SNNs is recently proposed by [10], where
the dendritic spine plasticity-based synaptic constraints are
incorporated during the pruning process.

However, all those prior pruning works for SNNs are
limited to relatively shallow networks (< 10 layers). In [11], a
lottery ticket hypothesis (LTH) based pruning method [20] is
proposed for SNNs that can efficiently prune over 95% of the
weight connections on very deep spiking neural networks (e.g.,
ResNet-19 [22]). Since the [11] shows the best performance
on the deep SNN architectures (e.g., VGG-16 and ResNet-
19) that many state-of-the-art SNN works adopt, we study our
utilization recovery method for the LTH-based SNNs [11].

Our approach differs from other LTH-related studies. Be-
cause LTH introduces a high compression ratio with minimal
performance degradation, researchers have explored its im-
plications from various angles. Applying LTH beyond image
classification is one of the major directions, such as in natural
language processing [28], graph neural networks [29], and
object detection [30]. Another line of work also proves the
theoretical background of LTH, suggesting that the identified
initial parameters might be strongly tied to the identified sparse
structure [31]–[34]. The other recent work [35] studies the
relationship between the LTH pruning and the LIFs’ firing

3

TABLE I
COMPARISON WITH PRIOR WORKS ON WORKLOAD IMBALANCE PROBLEM.

HW DENOTES HARDWARE.

Accelerator Weight Sparsity1 Extra HW Utilization2

EIE [17] 77% FIFOs ∼75%

GoSPA [14] 62% FIFOs ∼70%

SparTen [15] 35% Shuffle Units ∼95%

Column [18] 84% Permute Units ∼90%

u-Ticket (ours) 98% Not Required ∼100%
1Measured on the VGG-like network reported in the prior works.
2We report the median utilization from the prior works.

probability. It further theoretically proves that the LTH holds
in SNNs. Our work, different from previous research, focuses
on improving the hardware efficiency (i.e., the workload
imbalance problem) of the LTH-pruned SNNs.

Please note that the SNNs we focus on in this work are the
ones that trained with Backpropagation through time (BPTT).
This group of SNNs shows superior accuracy performance
in many complex vision tasks [11], [36]–[38]. There exist
other groups of SNNs that are trained differently. For ex-
ample, SNNs trained with spike-timing-dependent plasticity
(STDP) [4], [39], [40] and SNNs converted from pre-trained
artificial neural networks [41]–[43].

B. Utilization Recovery Methods

In [14] and [17], deep FIFO queues are used to build up a
backlog of workloads and thus alleviate workload imbalance
passively. On the other hand, [15] and [18] address the
workload imbalance problem more systematically. In [15],
an offline shuffle of the weight positions is done to balance
the workload in finer granularity. Similarly, [18] introduces
a new training method to pack the sparse weights into a
denser group for improving workload utilization. They both
introduce additional hardware for permuting and unshuffling
back the partial sum to the appropriate position. Although
[19] proposes a utilization-aware pruning method for ANNs on
speech recognition tasks, such a pruning method has not been
explored in image classification. Moreover, they require the
FIFO queues to achieve ∼90%utilization. Different from the
prior works, our method recovers the utilization of SNNs on
image classification tasks without additional hardware units
for implementation. Also, we achieve significantly higher
utilization (∼100%) compared to the previous works. Table
I summarizes the comparison between our method and other
utilization recovery methods to solve the workload imbalance
problem.

III. BACKGROUND

A. Spiking Neural Networks

Spiking Neural Networks (SNNs) process the unary tempo-
ral signal through multi-layer weight connections. Instead of
a ReLU neuron for a non-linear activation, recent SNN works
use a Leaky-Integrate-and-Fire (LIF) neuron which contains a
memory called membrane potential. The membrane potential
captures the temporal spike information by storing incoming

spikes and generating output spikes accordingly. Suppose a
LIF neuron i has a membrane potential ut

i at timestep t. We
can formulate the discrete neuronal dynamics [44], [45] by:

ut
i = λut−1

i +
∑
j

wijs
t
j . (1)

Here, λ is the leaky factor for decaying the membrane potential
through time. The stj stands for the output spike from a neuron
j at timestep t. The wij denotes a weight connection between
neuron j in the previous layer and neuron i in the current
layer. If the membrane potential reaches a firing threshold,
the neuron generates an output spike, and the membrane
potential is reset to zero. Similar to ANNs, we train the
weight connection wij in all layers. Our weight optimization
is based on the recently proposed surrogate gradient learning,
which assumes an approximated gradient function for the non-
differentiable LIF neuron [46]. We use tanh(·) approximation
following the previous work [45].

B. Lottery Ticket Hypothesis

Lottery Ticket Hypothesis (LTH) [20] has been proposed
where they found a dense neural network contains sparse
sub-networks (i.e., winning tickets) with similar accuracy
compared to the original dense network. The winning tickets
are found by multiple rounds of magnitude pruning operations.
Specifically, suppose we have a dense network f(x; θ) with
randomly initialized parameter weights θ ∈ Rn. In the first
round, the dense network f(x; θ) is trained to convergence
(step1 in Fig. 2). Based on the trained weights, we prune p%
weight connections with the lowest absolute weight values
(step2 in Fig. 2). We represent this pruning operation as a
binary mask m ∈ {0, 1}n. In the next round, we reinitialize
the pruned network with the original initialization parameters
f(x; θ⊙m) (step4 in Fig. 2), where ⊙ represents the element-
wise product. The training-pruning-initialization stages are re-
peated for multiple rounds. In the SNN domain, Kim et al. [11]
recently applied LTH to deep SNNs, resulting in high weight
sparsity (∼98%) for VGG and ResNet architectures. However,
they do not consider the workload imbalance problem in sparse
SNNs. Different from the previous work, we adjust weight
connections for improving utilization at each pruning round
step3, which reduces up to 77% latency and 64% energy cost
compared to the standard LTH [11] while maintaining both
sparsity and accuracy.

C. Workload Imbalance Problem

In the context of neural network accelerators, dataflow refers
to the hardware’s input and weight mapping strategy. To this
effect, recent works [14]–[16], [47], [48] have demonstrated
the efficacy of the weight stationary dataflow towards efficient
deployment of sparse networks and SNNs.

For weight-stationary dataflow, different weights are cast to
different PEs and stay inside the PE until they are maximally
reused across all the relevant computations. More specifically,
during the running time, depending on the memory capacity
of the hardware, each layer’s filter kernels will be grouped
in a chosen pattern and sent to each PE. As shown in Fig.

4

0 1 2 3 4 5 6 7 8 9 10 11 12
Pruning Rounds

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

utilization
sparsity

Fig. 4. Sparsity and utilization across pruning rounds for the standard LTH
method without utilization awareness. The pruning is done for 13 rounds on
VGG-16 being trained for image classification on CIFAR10 with 16 PEs.

3, the number of non-zero elements (or workload) allocated
to each PE varies significantly due to the randomness in
unstructured pruning. Moreover, the workload imbalance is
persistent irrespective of the grouping method chosen. Note
that here, we define the number of non-zero weights assigned
to a PE as the workload.

In this case, the wasted resources in PEs are based on the
difference between the largest workload and the average of
all other workloads. To quantitatively measure the portion of
non-wasted resources, we use the utilization metric [12], given
by

µ = 1− Tmax − Tavg

Tmax
· n

n− 1
, (2)

Tmax and Tavg are the slowest and the average processing time
among the PEs. n is the number of PEs. The metric quantifies
the percentage of processing time that the rest of the PEs,
excluding the slowest ones, are engaging in useful work.

In Fig. 4, we show how the utilization degrades as the
weight sparsity of the SNN increases in the standard LTH
method [11]. The preliminary result shows that in the final
round, the utilization can be as low as 59% on VGG-16
CIFAR10. Here, we assume that the total number of PEs is
16, and the utilization is averaged across all layers (weighted
by parameter count).

IV. U-TICKET

To resolve the workload imbalance problem, we propose
u-Ticket, where we achieve high utilization in sparse SNNs
during iterative pruning. In this section, we first present
the algorithm to train sparse SNNs while maintaining high
utilization. We then provide details of the proposed PE design
and the energy model to map the u-Ticket on the hardware.

A. Algorithmic Approach

1) Algorithm Overview: Our u-Ticket pruning consists of
multiple rounds similar to LTH [20]. For each round, we train
the networks till convergence, prune the low-magnitude weight
connections, balance the workload of PEs by recovering or
removing the weight connections, and finally re-initialize the
weights.

The main idea is to ensure a balanced workload between
PEs after each unstructured pruning round.

The overall u-Ticket process is described in Algorithm 1.
For each round, the pruned SNN from the previous round
is re-initialized. After that, the model is trained and pruned
where we obtain connectivity mask m̂i with imbalanced PE
workloads. To increase the utilization, we first compute the
workload for each PE, constructing the PE workload list W l

for each layer. Based on the W l, we calculate the average
workload wl

avg for layer l. Then, we go through each work-
load w in W l and randomly recover (wavg − w) of weight
connections if the PE’s workload w is smaller than the average
workload wl

avg. Otherwise, the number of weight connections
is pruned by (w − wavg). After the workload adjustment,
every workload w will have the same magnitude to ensure the
optimal utilization µ. We repeat the above-mentioned stages
for N rounds.

2) Design Choice of Workload Balance: There are three
main design metrics to be considered for our workload balanc-
ing process: workload mapping granularity, workload checking
granularity, and the workload balancing method.
Workload mapping granularity. In our u-Ticket, we as-
sume the following procedure of mapping the weights into the
PEs. For each PE, we will assign all the non-zero weights in
one filter to it. Those non-zero weights will stay stationary
inside the PE to fully utilize the weight-reuse across all
timesteps. This weight mapping method is adopted by many
recent SNN accelerator designs [47]–[49]. Moreover, similar
weight-stationary mapping is also adopted in many recent
sparse accelerator designs due to its dataflow efficiency under
the context of sparse neural networks [14]–[16].
Workload checking granularity. In our method, we use
average workload wl

avg across all PEs at layer l as the
reference to recover/remove weight connections. The reason
behind such a design choice is as follows:
(1) If we look at only partial PE workloads to decide on a
reference workload, though it will reduce the complexity of
getting the average workload, it will inevitably bring a sub-
optimal solution [20].
(2) The cost of checking all PE workloads to get the aver-
age workload is negligible compared to the overall iterative
training-pruning-initialization process. We find that on an RTX
2080Ti GPU, the total time cost of traversing through all PEs
to get the average workloads is only 0.2% of one complete
LTH searching round.
Workload balancing method. In our workload balancing
method, we choose to randomly recover and remove the
weights to get the optimal workload. There are other criteria to
choose the weights. For example, the magnitude of the weights
is a very common option [50], [51].

We empirically find that randomly choosing the weights
to be recovered and removed has very similar accuracy to
the criteria-based choosing method. Meanwhile, the random-
based choosing method has a better searching complexity with
O(n), while the criteria-based choosing method has at least a
complexity of O(n · log n).

B. Hardware Mapping
1) Processing Elements (PEs): To get an accurate energy

estimation, we need to map the sparse SNN to a proper

5

Algorithm 1 u-Ticket
Input: SNNs f(x; θ) with randomly-initialized parameter weights
θ ∈ Rn, connectivity mask mi ∈ {0, 1}n at iteration i, total pruning
round NRound, total number of layer L, number of PEs n, Workload
of a PE d, Workload list of a layer W l.
Output: Pruned f(x; θtrained ⊙mN)

1: initialize m1 with 1

2: for i← 1 to NRound do
3: f(x; θ ⊙mi)

4: f(x; θtrained ⊙mi)← Train(f(x; θ ⊙mi))

5: m̂i ← Prune(f(x; θtrained ⊙mi))
6: for l← 1 to L do
7: W l ← GetWorkload(f(x; θltrained ⊙ m̂l

i), n)
8: dlavg ← GetAverage(W l)

9: for d in Wl do
10: if d < dlavg then
11: ml

i+1 ← Recover(m̂l
i, davg − d)

12: else
13: ml

i+1 ← Remove(m̂l
i, d− davg)

14: end if
15: end for
16: end for
17: end for

0 -1

2 0

00 10 01

00 00 00

11 00 10
*

0

-1

2

0

PID=0

PID=1

PID=2

PID=3

00

10

00

00

PID=0

PID=1

PID=2

PID=3

10

01

00

00

00

00

11

00

00

00

00

10

CID=0 CID=1 CID=2 CID=3
WSP: 0110

Stride = 1

Fig. 5. Illustration of the weight sparsity pattern (WSP), the position ID
(PID), and the (convolution ID) CID.

hardware design. We develop our PE design based on [14], one
of the state-of-the-art sparse accelerators, to support running
sparse SNNs. Please note that our method of balancing the
workloads works on any sparse accelerator design as long as
it utilizes the weight stationary dataflow.

First, the non-zero weights, input spikes, and their corre-
sponding metadata (index) are read from the DRAM. The
weights are represented in weight sparsity pattern (WSP)
[14], while the spike activations are represented in standard
compressed sparse row (CSR) format. We use four timesteps
for the SNN in our experiments, thus we can group every
two activations into one byte (each activation has four unary
spikes.)

Then, an activation processing unit (APU, outside PEs)
filters out the zero activation (0-spikes across four timesteps)
and sends the non-zero activation together with their position
indices (decoded from CSR) to the PE arrays. The position
indices help to match the non-zero weights and activation in
2-D convolution.

In Fig. 5, we further illustrate the position indices that we
used in this work. We use PID (Position ID) and CID (Convo-
lution ID) to match the valid combination of spike activations
and weights (both non-zero). We explain the assignment of

PID and CID on the right of Fig.5. For an unrolled 2-D
convolution map, all the activations involved with the same
inner product (in the same column) share the same CID.
And the activations on the same row share a PID, as they
correspond to the same weight which is also assigned with
the same PID value. With this CID/PID matching, it is very
convenient to match the non-zero pairs of weights and spike
activations [14].

At the PE level, each PE contains four 16-bit AND gates,
256 24-bit accumulators, and one 1024 × 16 bits SRAM-based
scratch-pad. We further extend the 256 accumulators with 256
LIF units for generating the output spikes. Each LIF unit is
equipped with four 24-bit registers for storing the membrane
potential across four timesteps.

Fig. 6 illustrates the overall architecture and the computation
flow inside the PE. We process the network in a tick-batched
manner [47]. At step 1 , the non-zero weights and their WSPs
are mapped to each PE. At step 2 , the spike activation Sin

together with their position indices are sent to PE. Based on the
weight’s WSP and the activation’s position index, the selector
unit will output the matched non-zero weight. At step 3 and
4 , the dot-product operations between the input spike and

the matched weights are carried out, and the partial sums are
stored according to their position index. At step 5 , the partial
sums for each time step are sequentially sent to the LIF units
to generate the output spikes for each time step. Note that
steps 3 - 5 need to be repeated four times to match the four
timesteps used in our SNN model (only 1 bit of Sin is cast to
the PE at a time in step 2).

2) Energy Modeling: We do the simulation for the full
architecture. Since u-Ticket balances the workloads between
PEs, most of the improvements can be found at the PE level.
Thus, this work focuses on energy estimation at the PE level.
We extend the energy model from [48] to estimate the total
energy:

Etotal = Nwork ·(Ed
PE ·(1−Sspa

in)+El
PE)+Nidle ·El

PE , (3)

where Ed
PE and El

PE are the dynamic and leakage energy
of a single PE processing one input spike. As shown in [48],
there is no extra cost for skipping the zero-spike computation
in SNNs. In this work, we directly apply the input spikes as
the enable signal of the accumulators and LIF units. In this
way, we can stop those circuits from flipping when there are
incoming zero spikes. Thus, we directly apply the term of
spike sparsity, Sspa

in , in Eqn. 3 to approximate the dynamic
energy saving by skipping the zero spikes. Here Nwork is
defined as the total work cycles in which PEs are doing useful
work and Nidle denotes the total cycles in which PEs are
waiting in an idle state.

V. EXPERIMENT
A. Experimental Settings

1) Software Configuration: First, to validate the u-Ticket
pruning method, we evaluate our u-Ticket methods on
four public datasets: CIFAR10 [23], Fashion-MNIST [24],
SVHN [25], and CIFAR100 [23]. We choose two represen-
tative deep network architectures: VGG-16 [21] and ResNet-
19 [22]. We implement the networks on PyTorch and set the

6

Weight
SRAM
16Kb

Selector

+

+

+

+

… … …

…
…

Sin 1’bPID

WSP
LIF
Unit1

3
4

2

5

C
on

tr
ol

 U
ni

ts
Off-chip
DRAM

𝑈!"
> Sout 1’b

0
<< 1

+

LIF
Unit

LIF
Unit
LIF
Unit

2 stage FIFO

APU

PE #n

PE #2

PE #1

…

8’b1
8’b2
8’b4 …

8’b128

PID WSP
== 0

2
CID

Fig. 6. Overall architecture and the detailed inner architecture of PE. Here APU denotes the activation processing unit.

TABLE II
SNN TRAINING HYPERPARAMETERS FOR OUR U-TICKET METHOD.

Parameters Description Quantity

Batch Size - 128
Optimizer - SGD
T timesteps 4
γ learning rate 1e-1
λ weight decay 5e-4
µ momentum 0.9
τ membrane potential leak 0.75
vth firing threshold 1
reset mode - hard
epoch number of training epochs 150

timesteps T to 4 for all experiments. We use the state-of-the-art
direct encoding technique that has been shown to train SNNs
on image classification datasets with very few timesteps. We
use the same training configurations used in Table. II.

2) Hardware Configuration: We report the utilization, la-
tency, work cycles, and idle cycles based on our PyTorch-based
simulator which simulates the running-time distribution of the
weights to PEs. We use the weights grouping method as in
[14], [48] with 16 PEs. The PE level energy is estimated with
the model in Section IV-B2 with all computing units synthe-
sized in Synopsys Design Compiler at 400MHz using 32nm
CMOS technology and the memory units simulated in CACTI.
We set the standard LTH method [11] without utilization-
awareness as our baseline and use the same estimation model
to get the speed-up and energy results.

B. Experimental Results

1) Validation Result: We summarize the validation results
in Table III. The results confirm that our method works well for
deep SNNs (less than ∼1% accuracy drop). We also compare
the sparsity of filters and spikes between these two methods.
u-Ticket has a slightly higher filter sparsity, due to the extra
reduction in weight connections to ensure balanced workloads
for each PE. At the same time, u-Ticket keeps a similar level
of spike sparsity on VGG-16 and has better spike sparsity

TABLE III
COMPARISON OF ACCURACY, SPARSITY OF FILTERS, AND SPARSITY OF

SPIKES BETWEEN OUR METHOD AND THE STANDARD LTH METHOD.

Dataset Method Acc.(%) Sparsity(%) Sparsity(%)
(filters) (spikes)

VGG-16 [21]

CIFAR10 LTH [11] 91.0 98.2 84.8
u-Ticket (ours) 90.7 98.4 85.9

FMNIST LTH [11] 94.6 98.2 83.9
u-Ticket (ours) 94.0 98.5 81.4

SVHN LTH [11] 95.5 98.2 84.9
u-Ticket (ours) 94.8 98.5 80.1

CIFAR100 LTH [11] 63.9 98.2 81.9
u-Ticket (ours) 63.1 98.2 82.0

ResNet-19 [22]

CIFAR10 LTH [11] 91.0 97.6 64.1
u-Ticket (ours) 90.3 98.4 68.3

FMNIST LTH [11] 94.4 98.2 60.1
u-Ticket (ours) 93.3 99.0 62.9

SVHN LTH [11] 95.1 97.6 63.6
u-Ticket (ours) 94.6 98.6 68.2

CIFAR100 LTH [11] 66.7 98.2 77.5
u-Ticket (ours) 66.3 98.1 77.6

on ResNet-19. While a higher spike sparsity will bring better
energy efficiency, a spike sparsity that is too high will cause an
accuracy drop in deep SNNs [52]. This explains the accuracy-
sparsity tradeoff on ResNet-19 (on average 0.76% accuracy
drop with 3.5% sparsity gain).

In addition, we show the convergence speed results between
our method and the original LTH method in Fig. 8. The
result shows that on the CIFAR-10 dataset with the VGG-
16 network, our method only brings a slight convergence
overhead in the first 50 epochs. After the 100 epoch, the
convergence difference between the two methods is already
negligible. The same trends can also be found on other datasets
and networks.

2) Hardware Performance: We consider four metrics in this
section (i.e., work cycles, idle cycles, latency, and utilization).

• Work cycles (Nwork in Eqn. 4): Sum of total work cycles
for every PE across all the layers in the network.

7

0 1 2 3 4 5 6 7 8 9 1011
Layer Index

0

1

2

3

4

W
or

k
Cy

cle
s

1e7
LTH
u-Ticket

0 1 2 3 4 5 6 7 8 9 1011
Layer Index

0

1

Id
le

 C
yc

le
s

1e7
LTH
u-Ticket

0 1 2 3 4 5 6 7 8 9 1011
Layer Index

0

1

2

3

La
te

nc
y

1e6
LTH
u-Ticket

0 1 2 3 4 5 6 7 8 9 1011
Layer Index

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n

LTH
u-Ticket

(a) (b) (c) (d)

Fig. 7. The layerwise performance comparison between LTH and u-Ticket on four metrics, i.e., (a) work cycles, (b) idle cycles, (c) latency, (d) utilization.
We conduct experiments with VGG-16 architecture on CIFAR10.

20 50 100 150
Epochs

86

88

90

92

Ac
cu

ra
cy

LTH
u-Ticket

Fig. 8. Comparison of the convergence speed between the original LTH
method and our method. The accuracy results are based on CIFAR-10 with
VGG-16 networks.

• Idle cycles (Nidle in Eqn. 4): Sum of total idle cycles
for every PE across all the layers in the network.

• Latency: Time required by PEs to process all the layers
in the network. The latency is normalized with respect to
the time required for a PE to process one input spike.

• Utilization: We use Eqn. 2 to compute the utilization for
each layer. To compute the utilization of the network, we
calculate the weighted average utilization.

The hardware improvement results are summarized in Table
IV. By iteratively applying the utilization recovery during the
pruning, u-Ticket can recover the utilization up to 100% in the
final pruning round, thus reducing almost all the idle cycles for
PEs. Because of the re-balance of workloads among PEs, the
network can leverage more parallelism from the PE array, thus
significantly reducing the running latency. The number of work
cycles stays similar on both networks. We further visualize the
layerwise speedup results for VGG-16 on CIFAR10 in Fig. 7.
Overall, the layerwise work cycles and latency share similar
trends between the two methods. Furthermore, u-Ticket has a
larger number of idle cycle reductions on earlier layers due to
the larger feature map sizes.

3) Energy Performance: In this section, we further show
the energy efficiency improvements of u-Ticket over the stan-
dard LTH baseline. The energy differences are visualized in
Fig. 9 (a), from which we observe that the energy benefits of
balancing the workloads are huge. For CIFAR10, FMNIST,
and SVHN, we managed to reduce the energy cost by 41.8%,
35.4%, and 37.2% on VGG-16, and 55.5%, 63.8%, and 56.1%

TABLE IV
COMPARISON OF WORK CYCLES, IDLE CYCLES, LATENCY, AND
UTILIZATION BETWEEN U-TICKET AND THE STANDARD LTH.

Dataset Method Work Idle Latency Utilization
(×1e8) (×1e8) (×1e8)

VGG-16 [21]

CIFAR10 LTH [11] 1.34 0.41 0.11 0.59
u-Ticket (ours) 0.94 0.00 0.06 1.00

FMNIST LTH [11] 1.10 0.42 0.10 0.57
u-Ticket (ours) 0.81 0.00 0.05 1.00

SVHN LTH [11] 1.15 0.69 0.12 0.47
u-Ticket (ours) 0.86 0.00 0.05 1.00

CIFAR100 LTH [11] 1.15 0.69 0.12 0.47
u-Ticket (ours) 0.86 0.00 0.05 1.00

ResNet-19 [22]

CIFAR10 LTH [11] 1.66 1.73 0.21 0.31
u-Ticket (ours) 1.10 0.00 0.07 1.00

FMNIST LTH [11] 1.26 1.89 0.20 0.27
u-Ticket (ours) 0.73 0.00 0.05 1.00

SVHN LTH [11] 1.27 1.34 0.16 0.30
u-Ticket (ours) 0.84 0.00 0.05 1.00

CIFAR100 LTH [11] 1.15 0.69 0.12 0.47
u-Ticket (ours) 0.86 0.00 0.05 1.00

CIFAR10
VGG16

FMNIST
VGG16

SVHN
VGG16

CIFAR10
Res19

FMNIST
Res19

SVHN
Res19

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 C
os

t

1e8

LTH
u-Ticket

Fig. 9. Comparison of the normalized energy cost between two networks and
across three datasets. The energy results are normalized to the energy required
by a PE to process one input spike.

on ResNet-19.
The main source of energy cost reduction comes from

the elimination of idle cycles and the reduction of latency,
which ultimately reduces the leakage energy of the hardware.
ResNet-19, whose network is deeper, suffers more from the
workload imbalance problem and thus has more idle cycles
and longer latency compared to VGG-16. By eliminating

8

TABLE V
COMPARISON BETWEEN THE PERFORMANCE OF U-TICKET WITH AND

WITHOUT THE EARLY-TICKET (ET) METHOD.

Method Acc.(%) Sparsity(%) Utilization Searching Time
(filters) (seconds/round)

VGG-16, CIFAR10

LTH [11] 91.0 98.2 0.66 3031
u-Ticket 90.7 98.4 1.00 3032
LTH ET [11] 90.9 98.2 0.59 1553
u-Ticket ET 90.6 98.3 1.00 1558

almost all the idle cycles, u-Ticket brings more energy cost
reduction to ResNet-19 compared to VGG-16.

4) Searching and Recovering Speed: There are several
techniques in other LTH-based work that are used to reduce
the searching time [11], [53]. We further apply the Early-
Ticket [11] (ET) to u-Ticket to reduce the ticket searching
time for SNNs. As shown in the Table. V, u-Ticket works
well with ET. By applying ET, u-Ticket is still able to recover
the utilization to 100% at iso-accuracy and weight sparsity,
with approximately 50% searching time reduction. The result
suggests that our proposed method is orthogonal to other
existing techniques that reduce the searching time for standard
LTH.

C. Ablation Studies

Analysis of Sparsity:
We study the effects of the u-Ticket method under different

weight sparsity. We measure the energy difference between
u-Ticket and the LTH baseline at different pruning rounds
for both ResNet-19 and VGG-16 on the CIFAR10 dataset.
The result is visualized in Fig. 10 (b). As observed, with
increased weight sparsity, the benefits of using u-Ticket get
larger. This is due to the degradation of the utilization in LTH
as aforementioned in Fig. 4.
Analysis of #PEs:

We further study the effects of changing the number of PEs.
We run the u-Ticket for VGG-16 on CIFAR10 with 2, 4, 8,
16, 32, and 64 PEs, and illustrate the results in Fig. 10 (a).
While the energy cost only slightly changes with the increasing
number of PEs, the latency decreases linearly. Considering
that the area of PE arrays will also linearly increase with the
number of PEs, we conduct most of our experiments with 16
PEs, which is a suitable trade-off point.
Analysis of Energy Breakdown:

In Fig. 11, we show the energy breakdown comparison
between u-Ticket and the LTH baseline on ResNet-19 for the
CIFAR10 dataset. The energy components are the dynamic and
leakage energy of MAC operation, LIF operation, and MEM
operation (reading of SRAM-based scratchpad). We observe
that the leakage energy for both MAC and LIF operation is
significantly reduced in u-Ticket due to the elimination of the
idle cycles. Expectedly, the portion of the dynamic energy of
MAC and LIF operation increases.
System Level Study: Furthermore, we study the behavior
of the overall system of sparse SNNs. In Fig. 12 (a), we
show how the total DRAM and SRAM access (normal-
ized with respect to dense SNN) decrease with increasing

2 4 8 16 32 64
Number of PEs

0

1

2

3

No
rm

al
ize

d
En

er
gy

 C
os

t 1e9

Energy

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
La

te
nc

y

1e8
Latency

25.0 43.9 68.8 90.4 94.7 98.4
Weight Sparsity (%)

20

30

40

50

En
er

gy
 R

ed
uc

tio
n

(%
) VGG

ResNet

(a) (b)

Fig. 10. (a) Comparison of the normalized energy cost between two networks
and across three datasets. The energy results are normalized to the energy
required by a PE to process one input spike. (b) Percentage of normalized
energy reduction compared to the LTH baseline for different weight sparsity.

LTH u-Ticket

8.4%

24.4%

19.6%

45.1%

43.7%

27.3%11.9%

15.0%

0.92%

1.1%
1.9%

0.52%

Fig. 11. Comparison of the energy breakdown between u-Ticket and the LTH
baseline. MAC L, MEM L, and LIF L denote the leakage energy for MAC,
LIF, and memory operation, while MAC D, MEM D, and LIF D denote their
dynamic energy.

weight sparsity. The results again encourage the necessity
of pruning the networks into the extremely high sparsity
domain. Furthermore, we find that in the extremely high
weight sparsity regime, the PE level energy starts to take a
significant portion of the total energy (∼ 45% on VGG-16
with CIFAR10). As a result, after applying u-Ticket to balance
the PE workloads, we managed to reduce approximately 19%
of the total energy at the system level as shown in Fig. 12 (b).

Ti
m

e
(s

)

1.04s
(0.3%)

1.05s (0.3%)

1.06s (0.2%)

A100 V100 RTX2080

Seconds

Fig. 13. GPU latency of u-
Ticket.

u-Ticket Utilization Recovery
Overheads on GPUs: We also
quantify the latency overheads of
utilization check and recovery on
multiple GPU devices. The result
shows that our u-Ticket brings al-
most no latency overheads to the
standard LTH across three CUDA
GPUs: RTX-2080Ti, V100, and
A100. The result is shown in
Fig. 13. The latency is the total
searching time of one complete
u-Ticket search round. The green
portion is the time for training on
VGG-16 for the CIFAR10 dataset
for 15 epochs. The orange part is
the utilization recovery and check part (Line 6-16 in Algo-
rithm 1). Compared to the training time, u-Ticket’s utilization
check and recovery time is negligible (∼ 0.3% of one complete
ticket searching time).

9

0 15 35 55 75 95
Weight Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

#M
em

or
y

Ac
ce

ss
es

DRAM
SRAM

55.2%

25.9%
18.8%

DRAM & others

wasted by
workload
imbalance

total PE energy

(a) (b)

Fig. 12. (a) Normalized DRAM and SRAM accesses comparison across
different weight sparsity. (b) The component breakup of the total energy for
LTH baseline with 95% sparsity. Both results are shown for VGG-16 with
CIFAR10.

Accuracy: 73.3%

Accuracy: 72.8%

u-Ticket Utilization Recovery

Fig. 14. Weight sparsity vs. utilization for CIFAR10-DVS datasets on ResNet-
19 model.

TABLE VI
ABLATION STUDY: COMPARISON OF ACCURACY, SPARSITY OF FILTERS,

AND UTILIZATION BETWEEN U-TICKET AND LTH METHOD ON DVS
DATASETS.

Dataset Method Acc.(%) Sparsity(%) Utilization
(filters)

ResNet-19 [22]

CIFAR10-DVS LTH [11] 73.3 94.4 0.66
u-Ticket (ours) 72.8 95.3 1.00

N-Caltech101 LTH [11] 63.2 98.2 0.54
u-Ticket (ours) 64.9 97.8 1.00

Evaluation on Temporal-Series Datasets:
To further validate our method on datasets that heavily rely

on temporal-series information, we conduct experiments using
Dynamic Vision Sensor (DVS) datasets obtained from event-
based cameras. Descriptions of these datasets are provided
below:

CIFAR10-DVS: CIFAR10-DVS dataset [54] contains 10K
DVS images recorded from the CIFAR10 dataset [23]. We
resize the image resolution to 48 x 48 and divide the event
series into 10 frames per image sample.

N-Caltech 101: N-Caltech 101 dataset [55] contains 8831
DVS images recorded from the Caltech 101 dataset. Similar
to the CIFAR10-DVS, we resize the image resolution to 48 x
48 and divide the event data into 10 frames per sample. We
run both datasets on the ResNet-19 network with 10 rounds
of u-Ticket search. At each round, 25% weights are pruned.

We validate our u-Ticket method in Table. VI. For both the

DVS datasets, our method achieves iso-accuracy compared to
the original LTH method with slightly higher weight sparsity
and 100% utilization. We further illustrate the trend of utiliza-
tion and weight sparsity on CIFAR10-DVS in Fig. 14. Our
method yields a ticket with better utilization in every round.
Thus, we can easily recover the utilization to 100% for that
ticket without accuracy degradation.

VI. DISCUSSION

A. Comparison with Structured Pruning

In this work, we target to solve the workload imbalance
problem associated with unstructured pruning. In contrast to
unstructured pruning, structured pruning has also been a very
popular network compression method [50], [56], [57]. In struc-
tured pruning, the networks are pruned in a pattern that aims to
leverage the hardware’s power to process the pruned networks
more efficiently. The nature of the structured pruning does not
make it suffer from the workload imbalance problem that we
have discussed in this work. Although the structured pruning
methods take advantage of efficient hardware processing, they
do suffer from a relatively lower weight sparsity. For example,
on the VGG-16 network, the structured pruning on average
achieves around 85% weight sparsity, while our LTH-based
unstructured pruning gets over 95% weight sparsity.

B. Compatibility on Async Neuromorphic Chip

While in the paper, we have limited our discussion of
the uTicket’s hardware benefits to the synchronized digital
accelerators. It is worth noting that our method also has
the potential to improve the utilization of the async neuro-
morphic chips [2], [3], [58] when deploying the LTH-based
SNN models. Assume that a sparse SNN is deployed on the
neuromorphic chip. Depending on the number of synaptic
connections, different post-synaptic neurons will receive dif-
ferent numbers of event-driven packages between timestep t
to t + 1. This will result in an imbalanced processing time
across different cores. Furthermore, as a popular design choice
in neuromorphic chips, every time the chip advances its time-
step, there will be a barrier synchronization [59] between each
core. Consequently, the heavily imbalanced sparse networks
will lead to a longer waiting time for the idling cores during
the barrier synchronization process. So, in conclusion, as
long as the neuromorphic chips take some synchronization
steps between the asynchronized computations, there will be
a workload imbalance problem. Our method can potentially
provide a workload balance solution without any hardware
modifications on the chip. Moreover, this discussion should
also apply to other chip designs that use addressing algorithms.

C. Future Direction

We suggest several interesting potential future directions
based on this work. Firstly, although we find that the u-
Ticket method works well on recovering the utilization at iso-
accuracy and iso-weight-sparsity, the observations are based
on empirical experiment results. A detailed analysis of the

10

mathematical reason behind this would be useful for the com-
munity. Moreover, although we have the experiment results
showing that our workload balancing method would not hurt
the sparse firing activity of SNNs, theoretically studying the
relationship between the workload utilization and the spike
firing activity of SNNs is important. We envision that the
probability model from [35], which builds the relationship
between pruning and SNN firing, would be a good starting
point. Further, the motivation of this work is based on the
hardware-resource-limitation of SNNs, thus we focus our
experiments and analysis on SNNs. However, whether our
method is applicable to ANNs can be another useful insight
for the community.

VII. CONCLUSION

In this work, we propose u-Ticket, a utilization-aware LTH-
based pruning method that solves the workload imbalance
problem in SNNs. Unlike prior works, u-Ticket recovers the
utilization during pruning, thus avoiding additional hardware
to balance the workloads during deployment. Additionally, at
iso-accuracy, u-Ticket improves PE utilization by up to 100%
compared to the standard LTH-based pruning method while
maintaining filter sparsity of 98%. Moreover, u-Ticket reduces
the running latency by up to 77% and energy cost by up to
64% compared to the standard LTH baseline.

VIII. ACKNOWLEDGEMENTS

We thank our reviewers for their valuable feedback. This
work was supported in part by CoCoSys, a JUMP2.0 center
sponsored by DARPA and SRC, the National Science Foun-
dation (CAREER Award, Grant #2312366, Grant #2318152),
TII (Abu Dhabi), and the DoE MMICC center SEA-CROGS
(Award #DE-SC0023198).

REFERENCES

[1] K. Roy et al., “Towards spike-based machine intelligence with neuro-
morphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019.

[2] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[3] F. Akopyan et al., “Truenorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip,” IEEE TCAD, vol. 34, no. 10,
pp. 1537–1557, 2015.

[4] N. Rathi et al., “Stdp-based pruning of connections and weight quan-
tization in spiking neural networks for energy-efficient recognition,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 4, pp. 668–677, 2018.

[5] E. O. Neftci et al., “Stochastic synapses enable efficient brain-inspired
learning machines,” Frontiers in neuroscience, vol. 10, p. 241, 2016.

[6] L. Deng et al., “Comprehensive snn compression using admm optimiza-
tion and activity regularization,” IEEE TNNLS, 2021.

[7] W. Guo et al., “Unsupervised adaptive weight pruning for energy-
efficient neuromorphic systems,” Frontiers in Neuroscience, vol. 14, p.
598876, 2020.

[8] Y. Chen et al., “Pruning of deep spiking neural networks through
gradient rewiring,” arXiv preprint arXiv:2105.04916, 2021.

[9] Y. Shi et al., “A soft-pruning method applied during training of spiking
neural networks for in-memory computing applications,” Frontiers in
neuroscience, vol. 13, p. 405, 2019.

[10] B. Han et al., “Adaptive sparse structure development with prun-
ing and regeneration for spiking neural networks,” arXiv preprint
arXiv:2211.12219, 2022.

[11] Y. Kim et al., “Exploring lottery ticket hypothesis in spiking neural
networks,” in European Conference on Computer Vision. Springer,
2022, pp. 102–120.

[12] L. DeRose et al., “Detecting application load imbalance on high end
massively parallel systems,” in EuroPar, 2007.

[13] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ISCA, 2016.

[14] C. Deng et al., “Gospa: an energy-efficient high-performance globally
optimized sparse convolutional neural network accelerator,” in ISCA,
2021.

[15] A. Gondimalla et al., “Sparten: A sparse tensor accelerator for convo-
lutional neural networks,” in MIRCRO, 2019.

[16] A. Parashar et al., “Scnn: An accelerator for compressed-sparse convo-
lutional neural networks,” ISCA, 2017.

[17] S. Han et al., “Eie: Efficient inference engine on compressed deep neural
network,” ISCA, 2016.

[18] H. Kung et al., “Packing sparse convolutional neural networks for
efficient systolic array implementations: Column combining under joint
optimization,” in ASPLOS, 2019.

[19] S. Han et al., “Ese: Efficient speech recognition engine with sparse lstm
on fpga,” in FPGA, 2017.

[20] J. Frankle et al., “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” arXiv:1803.03635, 2018.

[21] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv:1409.1556, 2014.

[22] K. He et al., “Deep residual learning for image recognition,” in CVPR,
2016.

[23] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[24] H. Xiao et al., “Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms,” arXiv:1708.07747, 2017.

[25] Y. Netzer et al., “Reading digits in natural images with unsupervised
feature learning,” 2011.

[26] K. Roy et al., “Towards spike-based machine intelligence with neuro-
morphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019.

[27] D. V. Christensen et al., “2022 roadmap on neuromorphic computing
and engineering,” Neuromorphic Computing and Engineering, vol. 2,
no. 2, p. 022501, 2022.

[28] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin,
“The lottery ticket hypothesis for pre-trained bert networks,” Advances
in neural information processing systems, vol. 33, pp. 15 834–15 846,
2020.

[29] T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery
ticket hypothesis for graph neural networks,” in International conference
on machine learning. PMLR, 2021, pp. 1695–1706.

[30] S. Girish, S. R. Maiya, K. Gupta, H. Chen, L. S. Davis, and A. Shri-
vastava, “The lottery ticket hypothesis for object recognition,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 762–771.

[31] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving
the lottery ticket hypothesis: Pruning is all you need,” in International
Conference on Machine Learning. PMLR, 2020, pp. 6682–6691.

[32] A. Pensia, S. Rajput, A. Nagle, H. Vishwakarma, and D. Papail-
iopoulos, “Optimal lottery tickets via subset sum: Logarithmic over-
parameterization is sufficient,” Advances in neural information process-
ing systems, vol. 33, pp. 2599–2610, 2020.

[33] R. Burkholz, “Most activation functions can win the lottery without
excessive depth,” Advances in Neural Information Processing Systems,
vol. 35, pp. 18 707–18 720, 2022.

[34] A. da Cunha, E. Natale, and L. Viennot, “Proving the lottery ticket hy-
pothesis for convolutional neural networks,” in International Conference
on Learning Representations, 2021.

[35] M. Yao, Y. Chou, G. Zhao, X. Zheng, Y. Tian, B. Xu, and G. Li,
“Probabilistic modeling: Proving the lottery ticket hypothesis in spiking
neural network,” arXiv preprint arXiv:2305.12148, 2023.

[36] C. Lee et al., “Enabling spike-based backpropagation for training deep
neural network architectures,” Frontiers in neuroscience, 2020.

[37] Y. Wu et al., “Direct training for spiking neural networks: Faster, larger,
better,” in AAAI, 2019.

[38] H. Zheng et al., “Going deeper with directly-trained larger spiking neural
networks,” in AAAI, 2021.

[39] P. U. Diehl et al., “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Frontiers in computational neuro-
science, vol. 9, p. 99, 2015.

[40] R. Vaila, J. Chiasson, and V. Saxena, “A deep unsupervised feature
learning spiking neural network with binarized classification layers for
the emnist classification,” IEEE transactions on emerging topics in
computational intelligence, vol. 6, no. 1, pp. 124–135, 2020.

11

[41] N. Rathi et al., “Enabling deep spiking neural networks with hybrid
conversion and spike timing dependent backpropagation,” arXiv preprint
arXiv:2005.01807, 2020.

[42] S. Deng et al., “Optimal conversion of conventional artificial neural
networks to spiking neural networks,” arXiv preprint arXiv:2103.00476,
2021.

[43] A. Sengupta et al., “Going deeper in spiking neural networks: Vgg and
residual architectures,” Frontiers in neuroscience, vol. 13, p. 95, 2019.

[44] Y. Wu et al., “Spatio-temporal backpropagation for training high-
performance spiking neural networks,” Frontiers in neuroscience,
vol. 12, p. 331, 2018.

[45] W. Fang et al., “Incorporating learnable membrane time constant to
enhance learning of spiking neural networks,” in ICCV, 2021.

[46] E. O. Neftci et al., “Surrogate gradient learning in spiking neural
networks,” IEEE Signal Processing Magazine, vol. 36, pp. 61–63, 2019.

[47] S. Narayanan et al., “Spinalflow: An architecture and dataflow tailored
for spiking neural networks,” in ISCA, 2020.

[48] R. Yin et al., “Sata: Sparsity-aware training accelerator for spiking neural
networks,” arXiv:2204.05422, 2022.

[49] J.-J. Lee et al., “Parallel time batching: Systolic-array acceleration of
sparse spiking neural computation,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 317–330.

[50] W. Wen et al., “Learning structured sparsity in deep neural networks,”
Advances in neural information processing systems, vol. 29, 2016.

[51] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[52] Y. Li et al., “Differentiable spike: Rethinking gradient-descent for
training spiking neural networks,” NeurIPS, 2021.

[53] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G. Baraniuk, Z. Wang,
and Y. Lin, “Drawing early-bird tickets: Towards more efficient training
of deep networks,” arXiv preprint arXiv:1909.11957, 2019.

[54] H. Li et al., “Cifar10-dvs: an event-stream dataset for object classifica-
tion,” Frontiers in neuroscience, vol. 11, p. 309, 2017.

[55] G. Orchard et al., “Converting static image datasets to spiking neuro-
morphic datasets using saccades,” Frontiers in neuroscience, vol. 9, p.
437, 2015.

[56] E. Hanson et al., “Cascading structured pruning: enabling high data
reuse for sparse dnn accelerators,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 522–535.

[57] A. Zhou et al., “Learning n: M fine-grained structured sparse neural
networks from scratch,” arXiv preprint arXiv:2102.04010, 2021.

[58] O. J. Richter et al., “Event-driven spiking convolutional neural network,”
Jun. 16 2022, uS Patent App. 17/601,939.

[59] D. Hensgen et al., “Two algorithms for barrier synchronization,” Inter-
national Journal of Parallel Programming, vol. 17, pp. 1–17, 1988.

Ruokai Yin is a Ph.D. student in the Department
of Electrical Engineering at Yale University, advised
by Prof. Priyadarshini Panda. His research interests
lie in designing high-performance computer archi-
tectures for neural networks. Prior to joining Yale,
he received his BS-Electrical Engineering degree
from the University of Wisconsin-Madison, where
he worked with Prof. Joshua San Miguel on com-
puter architectures for stochastic computing.

Youngeun Kim is currently working toward a Ph.D.
degree in Electrical Engineering at Yale University,
New Haven, CT, USA. Prior to joining Yale, he
worked as a full-time student intern at T-Brain, AI
Center, SK telecom, South Korea. He received his
B.S. degree in Electronic Engineering from Sogang
University, South Korea, in 2018 and M.S. degree
in Electrical Engineering from Korea Advanced
Institute of Science and Technology (KAIST), in
2020. His research interests include neuromorphic
computing, computer vision, and deep learning.

Yuhang Li received the B.E. in Department of Com-
puter Science and Technology, University of Elec-
tronic Science and Technology of China (UESTC)
in 2020. He was a research assistant at the Na-
tional University of Singapore and UESTC in 2019
and 2021, respectively. Now he is pursuing his
Ph.D. degree at Yale University, supervised by Prof.
Priyadarshini Panda. His research interests include
Efficient Deep Learning, Brain-inspired Computing,
and Model Compression.

Abhishek Moitra is pursuing his Ph.D. in the
Intelligent Computing Lab at Yale. His research
works have been published in reputed journals such
as IEEE TCAS-1, IEEE TCAD and conferences such
as DAC. His research interests involve hardware-
algorithm co-design and co-exploration for design-
ing robust and energy-efficient hardware architec-
tures for deep learning tasks.

Priyadarshini Panda is an assistant professor in
the electrical engineering department at Yale Uni-
versity, USA. She received her B.E. degree in Elec-
trical & Electronics and Master’s degree in Physics
from BITS, Pilani, India in 2013 and her Ph.D.
in Electrical & Computer Engineering from Purdue
University, USA in 2019. She was the recipient of
outstanding student award in Physics in 2013. In
2017, she interned at Intel Labs, Oregon, USA where
she developed large-scale spiking neural network
algorithms for benchmarking the Loihi chip. She is

the recipient of the 2019 Amazon Research Award, 2022 Google Scholar
Research Award, and 2022 DARPA Riser Award. She has published more
than 60 publications in well-recognized venues including, Nature, Nature
Communications, and IEEE among others. Her research interests include-
neuromorphic computing, energy-efficient deep learning, adversarial robust-
ness, and hardware-centric design of robust neural systems.

