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Abstract—Spiking Neural Networks (SNNs) have gained sig-
nificant attention as a potentially energy-efficient alternative for
standard neural networks with their sparse binary activation.
However, SNNs suffer from memory and computation overhead
due to spatio-temporal dynamics and multiple backpropagation
computations across timesteps during training. To address this
issue, we introduce Tensor Train Decomposition for Spiking
Neural Networks (TT-SNN), a method that reduces model size
through trainable weight decomposition, resulting in reduced
storage, FLOPs, and latency. In addition, we propose a parallel
computation pipeline as an alternative to the typical sequential
tensor computation, which can be flexibly integrated into various
existing SNN architectures. To the best of our knowledge, this
is the first of its kind application of tensor decomposition in
SNNs. We validate our method using both static and dynamic
datasets, CIFAR10/100 and N-Caltech101, respectively. We also
propose a TT-SNN-tailored training accelerator to fully harness
the parallelism in TT-SNN. Our results demonstrate substantial
reductions in parameter size (7.98×), FLOPs (9.25×), training
time (17.7%), and training energy (28.3%) during training for
the N-Caltech101 dataset, with negligible accuracy degradation.

Index Terms—Neuromorphic computing, Spiking neural net-
work, Tensor train decomposition

I. INTRODUCTION

Spiking Neural Networks (SNNs) have gained significant
interest as a low-power substitute to Artificial Neural Networks
(ANNs) in the past decade [1]. Unlike ANNs, SNNs process
visual data in an event-driven manner, employing sparse binary
spikes across multiple timesteps. This unique spike-driven
processing mechanism brings high energy efficiency on various
computing platforms [2], [3]. To leverage the energy-efficiency
advantages of SNNs, many SNN training algorithms have been
proposed, which can be categorized into two approaches: ANN-
to-SNN conversion [4], [5] and backpropagation (BP) with
surrogate gradient [6], [7]. Among them, BP-based training
stands out as a mainstream training method as it not only
achieves state-of-the-art performance but also requires a small
number of timesteps (≤ 5). However, as BP-based training
computes backward gradients across multiple timesteps and
layers, SNNs require substantial training memory to store the
intermediate activations [8].

To address the challenge, various efficient techniques have
been applied to SNNs, including quantization [9], [10], Knowl-
edge Distillation (KD) [11], [12], and pruning [8]. In [9], the
authors focus on quantizing trainable weights to enable efficient
and faster inference on SNN architecture. Additionally, prior

research [10] has explored the weight and membrane potential
quantization to 2-bit for efficient hardware implementation. In
terms of KD, in [11], the ANN-based teacher model trans-
fers the knowledge to the student model which is an SNN
architecture for faster convergence. In contrast, in [12], the
teacher model is SNN architecture, whose spike distribution is
transferred to stabilize the training process of the student model.
These efforts have proven successful in reducing memory costs
and the total number of timesteps required, all while achieving
specific accuracy targets. Nonetheless, the previous techniques
mostly aim at fast and light inference, rather than focusing on
training efficiency.

In this work, we introduce the TT-SNN module for ac-
celerating training in SNNs by applying Tensor Train (TT)
decomposition [13]. Our approach involves decomposing the
weights of convolutional layers into smaller tensors, resulting
in a lighter and faster training process. Inspired by [14], we
modify the computation pipeline with parallel asymmetric-sized
kernels, which we term as Parallel TT (PTT), in contrast to
the conventional Sequential TT (STT) operations. Additionally,
we introduce the Half TT (HTT) module, which employs
partial parts of PTT computations to boost training efficiency.
Following the training process, we reconstruct the decomposed
convolutional weights to maintain spike-inspired computation
in the inference pipeline.

From the hardware perspective, the recent advancements
in SNN-tailored training accelerators, such as [3] and [15],
have paved the way for efficient SNN training. Given that the
STT method operates on a single sub-convolutional layer at a
time, it aligns well with the design of existing SNN training
accelerators [3], [15], where each sub-convolutional layer is
mapped sequentially onto the computation engines of the
accelerator. This ensures a direct and efficient mapping without
the need for significant architectural modifications. However,
the PTT and HTT methods introduce a level of parallelism
that is not optimally handled by the existing SNN training
accelerators. The reason is that prior accelerators are primarily
designed for single-layer workloads. The parallelism inherent
in PTT and HTT, where two sub-convolutional layers operate
concurrently, demands a more intricate hardware design. In
this work, we propose a TT-SNN-tailored training accelerator
design to fully harness the parallelism from the proposed PTT
and HTT methods.

The main contributions of our work are as follows: (1) We
propose the TT-SNN module, which leverages TT decomposi-
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(a) Basic convolution (b) Sequential TT (STT) (c) Proposed Parallel TT (PTT)

Fig. 1: Illustration of TT-SNN modules. The order of weight information is followed according to the pytorch framework,
i.e., (output channel, input channel, kernel size, kernel size) (a) Basic convolution weights with 3×3 kernel. (b) Sequential
computation of TT-cores is considered a traditional method with asymmetric kernels. (c) Proposed Parallel TT-module (PTT).
Two asymmetric kernels are computed in parallel with the output of the first sub-convolution. The parallel computation of PTT
can be seen as 3×3 without the four corner values.

tion to enhance the efficiency of SNN architecture by enabling
faster computation and reducing memory costs during training.
Departing from the typical sequential computations, we intro-
duce parallel processing into the training pipeline. (2) The TT-
SNN module can be easily and flexibly integrated into SNN
convolutional computations. (3) We propose a multi-cluster
systolic-array-based SNN training accelerator to efficiently im-
plement and evaluate the TT-SNN-based training. Compared
to the existing SNN training accelerator, our design further
reduces 28.3%(43.5%) energy cost for PTT(HTT) training. (4)
Our experiments demonstrate that TT-SNN reduces the num-
ber of trainable parameters, floating-point operations (FLOPs),
and training time on datasets such as CIFAR10/100 and N-
Caltech101 [16] without significant accuracy loss. For example,
on the N-Caltech101 dataset, TT-SNN achieves compression
ratios of 7.98× in parameters, 9.25× in FLOPs, and 17.66%
training time reduction, which highlights its compatibility with
event datasets.

II. PRELIMINARY

Spiking Neural Network: SNNs are brain-inspired archi-
tectures designed for efficient computation on neuromorphic
devices. It relies on the Leaky-Integrate-and-Fire (LIF) neu-
ron [17], a non-linear function that closely mimics biological
neurons in humans, making it an ideal choice for SNN design
due to its efficient computation. We use the iterative LIF neuron
model in [6] for designing SNN architecture as follows:

ul,t
i = τmul,t−1

i +

n∑
j=1

wijH(ul,t
i − Vth), (1)

where, ul,t
i is the membrane potential of i-th neuron in l-th layer

at timestep t, τm ∈ (0, 1] is the leaky factor for membrane
potential leakage, H(·) is the Heaviside step function with
firing threshold Vth. When a spike fires, ul,t

i ≥ Vth, the
membrane potential ul,t

i is reset to 0.
Tensor Train Decomposition: Tensor decomposition has
emerged as a promising compression technique for mitigating
the high redundancy inherent in Deep Neural Networks (DNNs)
by reducing the number of trainable parameters. There are pri-
marily three distinct types of tensor decomposition techniques
applied to DNNs [18], i.e., CANDECOMP/PARAFAC (CP),

Tucker, and TT decomposition. While CP and Tucker decom-
positions are compact and efficient, they may not be suitable
for large-scale models due to the curse of dimensionality [19].
In contrast, TT decomposition is less sensitive to the curse of
dimensionality and remains a powerful tool for reducing the
number of trainable parameters, that can be expressed as

A = G1 ×1 G2 ×1 · · · ×1 Gd, (2)

where A ∈ Rn1×n2×···×nd is a d-dimensional target tensor,
Gk ∈ Rrk−1×nk×rk (k ∈ {1, 2, · · · , d}) is the k-th decomposed
tensor, and ×1 denotes the contraction. Gk is called as TT-
core and rk(r0 = rd = 1) is TT-rank which controls the
complexity of decomposition. While TT decomposition has
been applied to several DNN structures [20], [21], most of
these applications mainly concentrate on reducing theoretical
computation complexity rather than addressing actual hardware
latency. In contrast, Gabor et al. [22] successfully reduce
FLOPs in each CNN layer by incorporating circular permute
into the TT decomposition.

W = circular_permute(W,−1) ∈ RI×K×K×O (3)

Here, W refers to CNN weights, I is the number of input
channels, O is the number of output channels, and K is kernel
size. Then, W can be decomposed by TT-format according to
Eq.(2), which can be represented as

WI,K1,K2,O =

R1∑
r1

R2∑
r2

R3∑
r3

w
(1)
I,r1

w
(2)
r1,K1,r2

w
(3)
r2,K2,r3

w
(4)
r3,O

.

(4)
Based on [22], one convolution computation can be separated
into four sub-convolutions with smaller weights like Fig. 1(b),
which results in a faster and lighter training process. This ap-
proach is different from the TT decomposition used in previous
works [20], [21], where an extra reconstruction process of TT-
cores is applied in every convolutional operation during both
training and inference.

III. PROPOSED METHOD

In this section, we begin by introducing the TT-SNN frame-
work, which incorporates TT decomposition into SNNs. The
first TT module is the PTT, designed to parallelize convo-
lutional computations. Additionally, we present another TT
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(b) Spatio-temporal computation diagram

Fig. 2: Illustration of Half TT (HTT) format for further com-
pression. (a) Instead of sharing all weights through timesteps,
HTT uses partial parts of sub-convolutions. (b) In the spatio-
temporal computation dimension of SNN, the HTT module
takes up a half-diagonal area due to its partial usage of weights
through timestep.

module, HTT, specifically engineered to enable half-diagonal
computation within the spatio-temporal computation dimen-
sion. Finally, we demonstrate the overall training process of
TT-SNN architecture.
Parallel TT Module: To address the challenges posed by the
high training complexity of SNNs, as discussed in Section
I, we introduce a novel and straightforward training pipeline
for SNNs called TT-SNN, illustrated in Fig. 1. TT decom-
position allows us to break down one convolution into four
sub-convolutions. In [22], they sequentially compute the sub-
convolutions, like Fig. 1(b), resulting in considerable perfor-
mance with a reduction in the number of parameters and
FLOPs. However, the Sequential TT (STT) loses the input
information due to its asymmetric kernel size. The second and
third sub-convolutions in STT compute with (3, 1) and (1, 3)
kernels, leading to either vertical or horizontal information ex-
traction. Consequently, the perpendicular direction information
of each kernel from the previous layer is overlooked.

In order to address this asymmetry in STT, we propose a
simple modification, called Parallel TT (PTT) illustrated in Fig.
1(c). In the PTT pipeline, the second and third sub-convolution
layers are computed in parallel, both utilizing the output from
the first sub-convolution layer. This parallel computation in
PTT resembles a 3×3 kernel without the four corner values.
Hence, this cross-sectional kernel can perceive the vertical
and horizontal feature information simultaneously, resulting in
improved performance. Motivated by [14], we restructure the
computations of sub-convolutions using Eq. (4) as follows:

yt = [(xt ∗w(1)
I,r ∗w

(2)
r,K1,r

)+ (xt ∗w(1)
I,r ∗w

(3)
r,K2,r

)] ∗w(4)
r,O, (5)

where xt, yt are input and output in timestep t respectively, and
∗ denotes convolution computation.
Half TT Module: In traditional SNN architectures, weight
sharing across timesteps is a common approach to keep weight

storage consistent, even as the number of timesteps increases.
[23] finds that SNNs tend to capture more information during
the early timesteps compared to the later ones, implying the
existence of redundancy in timesteps. To explore this argument,
we introduce a novel strategy called the Half TT (HTT) module,
which operates by using only half of the sub-convolutions in
select timesteps, as opposed to employing all sub-convolutions
throughout all timesteps as depicted in Fig. 2(a). The main
difference between PTT and HTT is that PTT employs all sub-
convolutions throughout the entire timestep, while HTT uses
half of the sub-convolutions in specific timesteps. We place
full sub-convolutions in the early timesteps and reserve half
sub-convolutions for the later timesteps. In this approach, we
can weaken the timestep redundancy and achieve faster and
more resource-efficient computation. The HTT can be seen as
a half-diagonal computation in a spatio-temporal computation
graph diagram on SNN shown in Fig. 2(b).
Training Pipeline: By aggregating the proposed TT modules,
we represent an efficient training pipeline, as outlined in
Algorithm 1. To begin, we initialize the base SNN model to
gain optimized TT-ranks using Variational Bayesian Matrix
Factorization (VBMF) [24]. VBMF is a practical tool for
estimating near-optimal ranks with automatic posterior ap-
proximation. Subsequently, the TT-SNN model is initialized
with decomposed weights and the acquired TT-ranks (lines
1-5). Note that the first CNN layer and the last classifier
are not decomposed layers as customization of these layers
results in a significant drop in accuracy. After training (lines
6-18), the entire weights of sub-convolutions are merged into
a single original weight to enable spike-based computations
throughout the model (lines 19-21). The Eq. (6) shows the
reconstruction process from Eq. (5). We simplify the weight
terms in Eq. (5) from {w(1)

I,r1
, w

(2)
r1,K1,r2

, w
(3)
r2,K2,r3

, w
(4)
r3,O

} to
{w(1), w(2), w(3), w(4)}.

yt = [(xt ∗ w(1) ∗ w(2)) + (xt ∗ w(1) ∗ w(3))] ∗ w(4)

= [xt ∗ (w(1) ×1 w(2)) + xt ∗ (w(1) ×1 w(3))] ∗ w(4)

= xt ∗ (w(1) ×1 w(2) ×1 w(4) + w(1) ×1 w(3) ×1 w(4))

= xt ∗ W̃.
(6)

In summary, our proposed approach offers substantial advan-
tages during training, and pre-trained TT modules can be
converted into the base model architecture without incurring
any significant losses.
IV. SNN TRAINING ACCELERATOR DESIGN FOR TT-SNN

To fully harness the parallelization from the PTT and HTT
methods, we propose a multi-cluster systolic-array-based SNN
training accelerator design as shown in Fig. 3. In our design, we
have 4 computation clusters for mapping the workload of each
sub-convolutional layer. The cluster 1 computes the first sub-
convolutional layer. Since the input is in the form of spikes, we
simplified the arithmetic units inside the PEs of 1 . As shown
in Fig. 3, cluster 2 and cluster 3 run in parallel (shown in the
red rectangle). The outputs from 1 will first be written into
an output buffer and then consumed by the clusters 2 and



Algorithm 1 Training process of TT-SNN
l, t, FC, LIF, and BN represent the l-th layer and the t-th timestep, the fully-
connected layer, the LIF neuron model in Eq. (1), and the batch normalization
respectively
1: [W1,W2, . . . ,WL] = Initialize(base model)
2: [r2, r3, . . . , rL−1] = VBMF([W2,W3, . . . ,WL−1])
3: for l← 2 to L− 1 do
4: [w

(1)
l , w

(2)
l , w

(3)
l , w

(4)
l ] = Initialize(Wl, rl)

5: end for
6: for epochs do
7: for t← 1 to T do
8: yt,1 = xt,1 ∗W1

9: for l← 2 to L− 1 do
10: xt,l = BN(LIF(yt,l−1))
11: ot,l = xt,l ∗ w

(1)
l

12: yt,l = [(ot,l ∗ w
(2)
l ) + (ot,l ∗ w

(3)
l )] ∗ w(4)

l
13: end for
14: yt,L = FC(LIF(yt,L−1))
15: end for
16: L = Cross-Entropy(

∑T
t=1 yt,L, label)

17: Calculate ∂L

∂w
(1)
l

, ∂L

∂w
(2)
l

, ∂L

∂w
(3)
l

, ∂L

∂w
(4)
l

18: Update w
(1)
l , w

(2)
l , w

(3)
l , w

(4)
l

19: end for
20: for l← 2 to L− 1 do
21: W̃l = (w

(1)
l ×1 w

(2)
l ×1 w

(4)
l ) + (w

(1)
l ×1 w

(3)
l ×1 w

(4)
l )

22: end for
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Fig. 3: Illustration of the design of our training accelerator
for efficiently mapping the PTT-SNN and HTT-SNN. MemP
denotes the membrane potential.

3 . The generated results are then merged in the adder array
units and sent to the cluster 4 for the computation of the
last sub-convolutional layer. To support the non-spike inputs
to those layers, we equip the PEs with multipliers in those
three clusters 2 - 4 . The outputs from the last cluster will
be sent to the LIF array units to be converted back to forms
of spikes. Finally, both the spikes and the membrane potentials
from the LIF units will be written back to the corresponding
global buffers. We run the whole design in a highly pipelined
fashion. While writing the inputs and weights to 1 , the weights
are also being filled to the cluster 2 and 3 to hide the SRAM
read latency. The outputs from the global output buffer after
the cluster 1 are instantly consumed by the parallel clusters
2 , 3 . The results from the adder arrays are also instantly

consumed by the cluster 4 .
We adopt three levels of the memory hierarchy: 1) an off-

chip DRAM, 2) SRAM-based global buffers, and 3) small
register-file-based scratch pads. The output-stationary dataflow
is adopted in cluster 1 and 4 and the weight-stationary
dataflow is adopted in cluster 2 and 3 for matching the
latency between clusters. We will finish processing all timesteps

for each layer and then move to the next [25]. We follow
the dataflow in [3] and [15] to accelerate the BPTT-based
backpropagation. The detailed design configurations of our
design can be found in Table. I.

TABLE I: Hardware Implementation Parameters.

Technology 28nm CMOS
# of Cluster 4
# of PE / Cluster 32
Scratch Pad Size / PE 32 bytes
Total Global Buffer Size 272 KB
Accumulator Precision 16-bits
Multiplier Precision 8-bits

V. EXPERIMENTS

A. Implementation Details

Software: We evaluate our work on CIFAR10/100 with
ResNet18 and N-Caltech101 with ResNet34 architecture,
respectively. We have adopted MS-ResNet [30] as our baseline
SNN architecture. We use direct coding to convert a float
pixel value into binary spikes [31]. During the training
process, we use SGD optimizer with momentum 0.9 and
weight decay 1e-4. We adopt cosine annealing scheduler
for learning rate decay with initial learning rate 0.1. We
set the number of epochs as 100 for all datasets. The
batch size for CIFAR10, CIFAR100, and N-Caltech101 is
set to 100, 100, and 50 respectively. In terms of spiking
mechanism, we set τm and Vth to 0.25, 0.5 respectively in
Eq. (1). The TT-ranks attained by VBMF for ResNet18 is
{24, 27, 25, 29, 37, 45, 43, 41, 65, 74, 70, 63, 104, 153, 186, 145},
and for ResNet34 is {24, 23, 22, 17, 16, 12, 22, 31, 25, 25, 24, 21,
20, 19, 48, 79, 64, 69, 63, 69, 60, 65, 63, 63, 62, 58, 121, 170, 173,
147, 161, 108}. The training timestep is 4 for CIFAR10 and 6
for N-Caltech101. When we use the HTT module for training
CIAFAR10/100 and N-Caltech101, half sub-convolutions are
applied in timestep t = 3, 4 and t = 5, 6 respectively. All
experiments are conducted by RTX 3090ti GPUs.
Hardware: We synthesize our accelerator in Sec. IV using
Synopsys Design Compiler at 400MHz using 28nm CMOS
technology. We use CACTI to simulate on-chip SRAM and
off-chip DRAM to obtain memory statistics. The energy results
are generated from SATASim, a cycle-accurate SNN training
energy simulator [3]. The training energy includes the compu-
tation and the data movement cost for both the forward and the
backward propagation of one image across all timesteps.

B. Experimental Results

We have summarized the main results for the CIFAR10/100,
N-Caltech101 datasets in Table II, which includes accuracy,
training time, the number of trainable parameters, FLOPs. Note
that the training time denotes the time taken for forward and
backward passes on a single batch of inputs of a given dataset.
CIFAR10/100: The results for CIFAR10/100 exhibit very sim-
ilar trends across all evaluation metrics. As anticipated, among
the TT modules, PTT achieves the highest accuracy but also an
insignificant accuracy drop compared to the baseline. In terms
of training time, PTT significantly reduces the training time,
approximately 17% faster than the baseline, and outperforms



TABLE II: Results on CIFAR10/100 with ResNet18 and N-Caltech101 with ResNet34 architecture. All metrics are computed
during the training process. Here, training time represents the time taken for forward and backward passes on a single batch of
inputs, M and G denote millions and gigabytes respectively.

Dataset Method Accuracy (%) Training time (s) # of parameters (M) FLOPs (G)
baseline 93.41 0.214 11.20 2.221

CIFAR10 STT 90.91 0.190 (11.21 % ↓) 1.83 (6.13 ×) 0.372 (5.97 ×)
(t = 4) PTT 91.65 0.176 (17.76 % ↓) 1.83 (6.13 ×) 0.372 (5.97 ×)

HTT 91.19 0.166 (22.43 % ↓) 1.83 (6.13 ×) 0.282 (7.88 ×)
baseline 72.49 0.214 11.21 2.222

CIFAR100 STT 68.49 0.190 (11.21 % ↓) 1.69 (6.62 ×) 0.373 (5.96 ×)
(t = 4) PTT 70.44 0.176 (17.76 % ↓) 1.69 (6.62 ×) 0.373 (5.96 ×)

HTT 70.22 0.167 (21.96 % ↓) 1.69 (6.62 ×) 0.282 (7.87 ×)
baseline 77.13 0.657 21.31 15.65

N-Caltech101 STT 76.48 0.572 (12.94 % ↓) 2.67 (7.98 ×) 1.69 (9.25 ×)
(t = 6) PTT 77.24 0.541 (17.66 % ↓) 2.67 (7.98 ×) 1.69 (9.25 ×)

HTT 75.38 0.530 (19.33 % ↓) 2.67 (7.98 ×) 1.46 (10.75 ×)

TABLE III: Training performance comparison before and after
applying PTT to previous works with CIFAR10 and DVS
Gesture datasets.

Method Model Dataset Accuracy(%)
(Base / PTT)

Training time(s)
(Base / PTT)

tdBN [26] ResNet20 CIFAR10 92.96 / 91.10 0.116 / 0.087
TEBN [27] VGG9 CIFAR10 91.78 / 90.56 0.066 / 0.056
TET [28] VGG9 DVS Gesture 94.79 / 94.49 0.351 / 0.319
NDA [29] VGG11 DVS Gesture 96.88 / 95.83 0.299 / 0.240

STT. All three modules have the same number of parameters,
and the differences in training time stem from architectural
modifications. For the CIFAR dataset, HTT emerges as the
most efficient module, reducing training latency by over 21%
and FLOPs by about 8× compared to the baseline.
N-Caltech101: N-Caltech101 displays comparable trends with
the CIFAR dataset across most evaluation metrics. However,
the results for the HTT module differ. In contrast to the static
CIFAR dataset, the accuracy of HTT is even lower than that of
STT in N-Caltech101. We believe this accuracy drop is caused
by the characteristics of dynamic datasets. When training an
SNN architecture with static datasets, the input data remains
consistent throughout the timesteps. Consequently, even with
some half sub-convolutions in the later timesteps, the full sub-
convolutions in the early timesteps suffice to extract feature
information. However, in dynamic datasets, each input in every
timestep is distinct. As a result, information loss occurs when
half sub-convolutions are applied, as some information from the
new input may not be effectively extracted. On the other hand,
the accuracy of the PTT module surpasses that of the baseline
and reduces FLOPs by about 9×. This indicates that our
proposed method integrates well with not only static datasets
but also dynamic event datasets.
On the Existing SNN Training Accelerator: We first directly
simulate the energy costs on the existing SNN training acceler-
ator [3] for training the baseline SNNs, the STT-based SNNs,
the PTT-based SNNs, and the HTT-based SNNs. The results are
shown in Fig. 4(a). Due to the model size reduction brought
by the decomposition, we observe that the STT-based methods
reduce 68.1% training energy cost from the baseline SNNs.
However, as we discussed in Sec. IV, due to the layer-by-layer
mapping strategy in the prior works, the PTT-based and HTT-
based SNNs do not benefit from the parallelism during the
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Fig. 4: (a) Training energy costs of STT, PTT, and HTT-
based SNNs compared to the baseline SNN on ResNet18 and
ResNet34. The results are calculated based on the accelerator
design of [3]. (b) The training energy cost improvements of
PTT and HTT compared to STT on our proposed multi-cluster
accelerator design.

training. Consequently, compared to the training of STT-based
SNNs, HTT-based SNNs cost similar energy, and the PTT-based
SNNs even cost 10.9% higher energy. The reason for the higher
energy cost is the fact that the PTT method needs to store the
outputs from one of the sub-convolutional layers to DRAM and
then re-fetch them back to the chip to merge the results before
proceeding to the last sub-convolutional layer.
On the Proposed SNN Training Accelerator: Since our
proposed multi-cluster design can fully harness the paral-
lelism between sub-convolutional layers, we manage to reduce
28.3%(43.5%) training energy cost on the PTT(HTT) method
from the STT method as shown in Fig. 4(b).

C. Compatibility with other SNN architectures

We further verify the compatibility of our work with previous
SNN architectures, including tdBN [26], TEBN [27], TET [28],
and NDA [29], by integrating the PTT modules, which is
shown in Table III. We utilize the architectures given by each
previous work on both static and dynamic datasets: CIFAR10
and DVS128 Gesture [32]. The PTT module can decrease the
training time in all methods: 25.00% on tdBN, 15.15% on
TEBN, 9.12% on TET, and 19.73% on NDA respectively, with-
out significant accuracy degradation. These results highlight the
effectiveness and flexibility of TT-SNN as a powerful plug-in
tool for accelerating the training process of any SNN algorithm.
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Fig. 5: Performance trends according to the timesteps. (a)
Accuracy and (b) training time between STT, PTT, and HTT
during the training process.

TABLE IV: Accuracy results based on the arrangement of full
and half sub-convolutions in the HTT module.

t = 1 t = 2 t = 3 t = 4 Accuracy (%)
F F H H 91.19
H H F F 90.94
H F H F 90.68
F H F H 90.89

F = full sub-convolution / H = half sub-convolution

D. Ablation Study

In this section, we perform an ablation study to gain a
better understanding of the TT-SNN. Specifically, we analyze
the performance of TT modules based on the timestep and
the placement order of full and half sub-convolutions within
the HTT modules. The ablation study is conducted with the
ResNet18 and CIFAR10 dataset.
TT Modules through Timestep: Given that the SNN architec-
ture incorporates a timestep variable, it becomes crucial to ex-
amine how TT modules perform concerning this variable. Fig. 5
illustrates that our proposed TT modules work across different
timesteps. Notably, the PTT module consistently achieves the
highest accuracy, while the HTT module consistently exhibits
the fastest training time across all timesteps.
The Order of Half Sub-convolutions: When employing the
HTT module, we put the full sub-convolutions in the early
timestep and the half sub-convolutions in the later timestep.
This is motivated by [23], which suggests that SNN architec-
tures tend to capture more information in the early timesteps.
To further investigate this argument, we conduct experiments by
altering the placement of full and half sub-convolutions within
a 4-timestep ResNet18 architecture, as shown in Table IV.
Note that we use two full sub-convolutions and two half sub-
convolutions. As anticipated, when the full sub-convolutions
are located in the early timestep, i.e., t = 1, 2, we achieve the
highest accuracy.

VI. CONCLUSION

In this work, we have proposed TT-SNN architecture to
gather several advantages of memory and computation costs
during the SNN training. We first apply TT decomposition to
SNN and modify the training pipeline to incorporate parallel
computation instead of traditional sequential computation be-
tween TT-cores. Our extensive experiments on CIFAR10/100,
and N-Caltech101 datasets validate the effectiveness of our
efficient training technique for both static and dynamic datasets.
Furthermore, our TT modules can be easily and flexibly

adopted in other SNN-based convolutional architectures, en-
abling SNNs to maintain enhanced training efficiency and re-
duced computational overhead in a variety of SNN applications.
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