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ABSTRACT2

In this study, we explore Human Activity Recognition (HAR), a task that aims to predict3
individuals’ daily activities utilizing time series data obtained from wearable sensors for health-4
related applications. Although recent research has predominantly employed end-to-end Artificial5
Neural Networks (ANNs) for feature extraction and classification in HAR, these approaches6
impose a substantial computational load on wearable devices and exhibit limitations in temporal7
feature extraction due to their activation functions. To address these challenges, we propose the8
application of Spiking Neural Networks (SNNs), an architecture inspired by the characteristics9
of biological neurons, to HAR tasks. SNNs accumulate input activation as presynaptic potential10
charges and generate a binary spike upon surpassing a predetermined threshold. This unique11
property facilitates spatio-temporal feature extraction and confers the advantage of low-power12
computation attributable to binary spikes. We conduct rigorous experiments on three distinct13
HAR datasets using SNNs, demonstrating that our approach attains competitive or superior14
performance relative to ANNs, while concurrently reducing energy consumption by up to 94%.15

Keywords: Brain-inspired Computing, Neuromorphic Computing, Human Activity Recognition, Spiking Neural Networks, Hardware16
Efficiency17

1 INTRODUCTION

In recent years, the proliferation of smart devices, such as smartphones and fitness trackers, has led18
to a growing interest in understanding user activities and behavior for healthcare applications. Human19
Activity Recognition (HAR) (Lara and Labrador, 2012; Vrigkas et al., 2015; Anguita et al., 2013) is an20
area of research that aims to identify user activities, with applications spanning sports injury detection,21
well-being management, medical diagnostics, smart building solutions (Ramanujam et al., 2021), and22
elderly care (Nweke et al., 2019). To accomplish these objectives, HAR tasks rely on specific input patterns23
derived from various sensors embedded in smart devices, including accelerometers, gyroscopes, and24
electroencephalogram (EEG) sensors. As the data collected from wearable sensors are time series in nature,25
the recognition of temporal patterns in sensor data is crucial for achieving high accuracy and efficiency.26
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Traditionally, researchers have employed hand-crafted features and straightforward classifiers for HAR27
tasks. Feature extraction techniques can be broadly categorized into statistical and structural (Bulling et al.,28
2014; Figo et al., 2010). Statistical features, such as mean, median, time domain, and frequency domain,29
encapsulate the distribution properties of individual training data samples. In contrast, structural methods30
account for the interactions between different training data samples, exemplified by techniques like principal31
component analysis (PCA), linear discriminant analysis (LDA), and empirical cumulative distribution32
functions (ECDF) (Abidine et al., 2018). Employing machine learning-based classifiers (Aggarwal and33
Xia, 2014; Kim and Ling, 2009; Shoaib et al., 2016) in conjunction with hand-crafted features has resulted34
in reasonably satisfactory performance.35

In more recent studies, deep learning techniques have been adopted for end-to-end feature extraction and36
classification in HAR tasks (Nweke et al., 2018). These approaches employ convolutional layers in Artificial37
Neural Networks (ANNs) (Mnih et al., 2015; Ignatov, 2018; Wan et al., 2020) and optimize the model38
using gradient backpropagation. Due to the capacity of gradient descent optimization to automatically39
determine the most suitable parameters, ANNs have demonstrated proficient performance across diverse40
datasets. Fig. 1 illustrates the process of this algorithm, where the ANN utilizes time series data from41
wearable sensors to predict human activity.42

However, we contend that ANNs, which employ full precision (32-bit) computation and exhibit low43
sparsity, impose considerable computational complexity and energy consumption on wearable devices. As44
expounded by (Rastegari et al., 2016; Qin et al., 2020), 32-bit networks necessitate 58× more operations45
compared to fully 1-bit networks. Furthermore, ANNs rely on ReLU neurons (Krizhevsky et al., 2012)46
that do not account for temporal correlations. This design choice may be suboptimal, particularly for time47
series data, as it simply adapts the ANN framework from the image domain.48

Due to the high-efficiency demands on wearable devices, reducing the memory and computation cost of49
HAR models has been a crucial research problem. As an example, Cheng et al. (2022) propose to use an50
ensemble of a set of experts, where each expert is a simple linear feature extractor. In addition, Tang et al.51
(2020) use Lego bricks as lower-dimension filters. Although these methods reduce the hardware cost to a52
certain extent, they lack direct optimization on the hardware side. As we mentioned, an extremely low-bit53
neural network can reduce hardware costs by an order of magnitude (Li et al., 2019).54

Hypothetically, simply adapting the current architecture to 1-bit networks will greatly impact the55
representation ability, and thus reduce the accuracy of HAR. To address this problem, one has to consider56
how to extract the temporal information in sensor data more effectively with discrete and limited 1-bit57
representation.58

To address the aforementioned problems, we employ Spiking Neural Networks (SNNs) (Tavanaei et al.,59
2019; Roy et al., 2019; Deng et al., 2020; Panda et al., 2020; Li et al., 2021b)(Xu et al., 2023, 2022; Zhu60
et al., 2022) in conjunction with convolutional layers for processing time series data in HAR tasks. HAR61
can benefit from SNNs in two key aspects: (1) SNNs leverage binary spikes (either 0 or 1) for activation,62
enabling multiplication-free and highly sparse computation, thereby reducing energy consumption for time63
series data (Zhang et al., 2018, 2021; Wu et al., 2021); (2) SNNs inherently model the temporal dynamics64
present in time series data, as spiking neurons within SNNs maintain a variable called the membrane65
potential over time. When the membrane potential surpasses a predefined threshold, the neuron fires a66
spike in the current time step. Capitalizing on these two advantages, our SNNs exhibit comparable or even67
superior performance to ANNs.68
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Additionally, we extend a previous hardware accelerator design to support 1D convolution along the69
time dimension, making it suitable for SNN implementation (Yin et al., 2022). We evaluate our SNNs on70
three widely-used HAR datasets (UCI-HAR (Anguita et al., 2013), UniMB SHAR (Micucci et al., 2017),71
HHAR (Stisen et al., 2015)) and compare them with ANN baselines. Our SNNs achieve the same or higher72
accuracy than ANNs while reducing energy consumption by up to 94%.73

In summary, our contributions are three-fold:74

1. We propose the use of SNNs for HAR tasks, significantly reducing energy consumption75
while integrating a temporally-evolving activation function.76

2. We design a hardware accelerator tailored for deploying SNNs on edge devices.77

3. We conduct extensive experiments on three HAR benchmarks, demonstrating that our78
SNNs outperform ANNs in terms of accuracy while maintaining energy-saving advantages.79

2 MATERIALS AND METHODS

2.1 Notations80

We use bold lower letters for vector representations. For example, x and y denote the input data and81
target label variables. Bold capital letters like W denote the matrices (or tensors as clear from the text).82
Constants are denoted by small upright letters, e.g., a. With bracketed superscript and subscript, we can83

denote the time dimension and the element indices, respectively. For example, x(t)
i means the i-th training84

sample at time step t.85

2.2 Background of HAR86

Concretely, we denote the wearable-based sensor dataset with {xi}Ni=1, and each sample xi ∈ RT×D is87
collected when the wearer is doing certain activity yi, e.g., running, sitting, lying, standing, etc. Here, data88
samples are streaming and have T time steps in total. D is the dimension of the sensor’s output. As an89
example, the accelerometer records the acceleration in the (x, y, z)-axis, thus D = 3 for the accelerometer90
data. We are interested in designing an end-to-end model f(·) and optimizing it to predict the activity label91
y.92

2.3 Spiking Neuron93

In this section, we introduce the definition of spiking neurons. We adopt the well-known Leaky-Integrate-94
and-Fire (LIF) neuronal model for spiking neurons (Liu and Wang, 2001), which constantly receives input95
and fires spikes through time. Formally, the LIF neuron maintains the membrane potential v through time,96
and at t-th time step (1 ≤ t ≤ T ), the membrane potential receives the pre-synaptic input charge c(t), given97
by98

v(t+1),pre = τv(t) + c(t),where c(t) = Ws(t). (1)

Here, τ is a constant between [0, 1] representing the decay factor of the membrane potential as time flows,99
which controls the correlation between time steps. τ = 0 stands for 0 correlation and LIF degenerates to100
binary activation (Rastegari et al., 2016) without temporal dynamics, while τ = 1 stands for maximum101
correlation and (Li et al., 2021a; Deng and Gu, 2021) proves that LIF will become ReLU neuron when T is102
sufficiently large. c(t+1) is the product between weights W and the spike s(t+1) from previous layer. After103
receiving the input charge, the LIF neuron will fire a spike if the pre-synaptic membrane potential exceeds104
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Figure 1. The overall HAR task procedure with ANN. Collected from smart devices, the sensor data are
processed by ANN which recognizes user activity.
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Figure 2. The schematic view of artificial neurons and spiking neurons. Artificial neuron takes full
precision input and rectifies it if it is less than 0 and pass it otherwise; spiking neuron considers the
correlation between times, and fire a spike only if the membrane potential is higher than a threshold.

some threshold, given by105

s(t+1) =

{
1 if v(t+1),pre > Vth

0 otherwise
, (2)

where Vth is the firing threshold. Note that the spike s(t+1) will propagate to the next layer, here we omit106
the layer index for simplicity.107
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Figure 3. An example of the forward and backward process of LIF neurons in 3 time steps. →: forward,
→: backward, ❶: potential charge, ❷: fire, ❸: reset, ❹: integrate and decay.

If the LIF neurons fire a spike, the membrane potential will be reset. This can be done by either soft-reset108
or hard-reset, denoted by109 {

v(t+1) = v(t+1),pre · (1− s(t+1)) # Hard-Reset

v(t+1) = v(t+1),pre − s(t+1) · Vth # Soft-Reset
, (3)

where hard-reset sets v(t+1) to 0, while soft-reset subtracts v(t+1) by Vth. We choose LIF neurons because110
s(t+1) is binary and dependent on input in previous time steps. Fig. 2 describes the difference between111
ANN and SNN in a systematic way. In our experiments, we will conduct ablation studies on the decay112
factor, the firing threshold, and the reset mechanism.113

2.3.1 Integrating Spiking Neurons into ANN114

We first integrate spiking neurons into artificial neural networks by replacing their non-linear activation115
with LIF. As a result, we can compare the performance between artificial neurons and spiking neurons.116
Specifically, since the time series data naturally has a time dimension, we also integrate the pre-synaptic117
potential charge along this time dimension. For instance, suppose a ∈ Rn×c×T is a pre-activation tensor,118
where n, c, T represent the batch size, channel number, and total time steps, respectively. We set the charge119
in each time step for LIF as the pre-activation in the corresponding time step, i.e., c(t) = a:,:,t. Then, we120
stack the output spikes along the time dimension again, i.e., S = stack({s(t)}Tt=1), for calculating the121
pre-activation in next layer.122

2.4 Optimization123

Although LIF neurons manage to model the temporal features and produce binary spikes, the firing124
function (Eq. (2)) is discrete and thus produces zero gradients almost everywhere, prohibiting gradient-125
based optimization. Particularly, the gradient of loss (denoted by L) w.r.t. weights can be computed using126
the chain rule:127

∂L

∂W
=

T∑
t=1

∂L

∂s(t)
∂s(t)

∂v(t),pre

(
∂v(t),pre

∂c(t)
∂c(t)

∂W
+

t−1∑
t′=1

∂v(t),pre

∂v(t′)

∂v(t′)

∂v(t′),pre
∂v(t′),pre

∂c(t
′)

∂c(t
′)

∂W

)
. (4)
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Figure 4. The illustration of the hardware design we used for the experiment.

Here, all terms can be differentiated except ∂s(t)

∂v(t),pre which brings zero-but-all gradients. To circumvent this128
problem, we use the surrogate gradient method. In detail, we use the triangle surrogate gradient, given by129

∂s(t)

∂v(t),pre
= max

(
0, 1−

∣∣∣∣∣v(t),pre

Vth
− 1

∣∣∣∣∣
)
. (5)

As a result, SNNs can be optimized with stochastic gradient descent algorithms.130

2.5 Hardware Implementation131

Finally, we introduce the hardware platform that we design for carrying out the experiments on energy132
efficiency. We extend the overall architecture and PE design from (Yin et al., 2022) to support the necessary133
computation and data movement for our SNNs in HAR tasks. Owing to the 1D convolution and temporal134
dynamics that are naturally embedded in the time series data, the complexity of the hardware design has135
been largely reduced.136

As shown in Fig. 4, our systolic-array-based hardware platform equips one PE array and two global137
buffers for holding the weights and spikes. The size of the PE array and global buffers are configurable138
according to different network structures. In this work, we set the number of PEs to 128, weight (W) buffer139
to 32 KB, and spike (S) buffer to 576 bytes, for matching with the dataflow used in (Yin et al., 2022). We140
briefly explain the computation and data movement flow below.141

In Fig. 4, at step 1 , the entire weights for the layer are fetched into the global buffer from DRAM.142
The weights and the spikes will be written into the scratchpads inside PEs at step 2 . At step 3 , the143
accumulation is carried out for computing the Ws(t) and the partial sum result is added with the residual144
membrane potential from time step t− 1 at step 4 . The latest membrane potential for time step t is then145
sent to the LIF unit at step 5 to generate the output spike s(t). According to the dataflow in (Yin et al.,146
2022), each PE will only focus on working on one output neuron, and the PE array processes the whole147
output feature map in parallel. After that, spikes for the next layer will be written into the S buffer at148
step 6 , and the whole process will repeat. Note that we can directly apply the input spike to skip the149
accumulation and weight scratchpad access if the input is equal to zero. We show the energy cost for150
each operation on the PE level in Table 1 for the reader’s reference. Here, Emac is the energy cost for a151
single multiply-accumulate (MAC) operation (note that the multiplication with spikes becomes logical152
AND operation between spikes and weights); Espa is the energy cost for handling spike sparsity; ELIF153
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Table 1. Normalized energy cost for each operation on the PE level. The energy is normalized with the
energy cost for one MAC operation in the ANN.

Operation Normalized Energy Cost

Emac 0.175

Espa 0

ELIF 0.383

EIspad 0.107

EWspad 1.712

Table 2. Accuracy (%) comparison between different networks on three HAR datasets (DCL means
DeepConvLSTM).
Model UCI-HAR (Anguita et al., 2013) SHAR (Micucci et al., 2017) HHAR (Stisen et al., 2015)
CNN 96.29±0.12 92.38±0.51 96.19±0.14
DCL 97.87±0.32 90.78±1.05 97.15±0.17
LSTM 82.41±4.04 83.87±0.96 95.59±0.20
Transformer 96.02±0.27 83.19±0.74 95.82±0.16

SpikeCNN 96.40±0.15 94.04±0.34 96.20±0.09
SpikeDCL 98.86±0.28 92.08±0.77 97.52±0.10

is the energy of a LIF operation; EIspad and EWspad are the single access energy to the input and weight154
scratchpad separately. All of the values are normalized by the energy cost of a MAC operation in ANN.155

3 EXPERIMENTS

In this section, we verify the effectiveness and efficiency of our SNNs on three popular HAR benchmarks.156
We first briefly provide the implementation details of our experiments and then compare our method with157
ANN baselines. Finally, we conduct ablation studies to validate our design choices.158

3.1 Implementation Details159

We implement our SNNs and existing ANNs with the PyTorch framework (Paszke et al., 2019). For160
all our experiments, we use Adam optimizer (Kingma and Ba, 2014). All models are trained for 60161
epochs, with batch size 128. The only flexible hyper-parameter is the learning rate, which is selected from162
{1e− 4, 3e− 4, 1e− 3} with the best validation accuracy. We use Cosine Annealing Decay for the learning163
rate schedule. For all three HAR datasets, we split them to 64% as the training set, 16% as the validation164
set, and 20% as the test set. We report test accuracy when the model reaches the best validation accuracy.165
Note that these datasets only have one label for each input sample, therefore top-1 accuracy is the same166
as the F-1 score. Similar to the SNN in image recognition tasks (Kim et al., 2022), the last layer of our167
SNN architecture is a fully connected layer. Therefore, we simply integrate all the membrane potentials in168
this layer for the softmax class prediction. We use the vanilla cross-entropy loss function rather than other169
specific loss functions (Deng et al., 2022; Zhu et al., 2022) to optimize our model. The dataset descriptions170
are shown below:171
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Table 3. Accuracy (%) comparison between our SNNs with existing ANNs, including CNN, LSTM,
DeepConvLSTM.

Method Model UCI-HAR SHAR HHAR
Ronao and Cho (2016) CNN 94.79 - -
Khan et al. (2018) CNN - - 78.75
Wang and Liu (2020) LSTM 91.65 - 85.82
Mukherjee et al. (2020) DCL - 92.30 -
Zhu et al. (2018) DCL 97.31 - -
Ours SpikeCNN 96.40±0.15 94.04±0.34 96.20±0.09
Ours SpikeDCL 98.86±0.28 92.08±0.77 97.52±0.10

UCI-HAR (Anguita et al., 2013) contains 10.3k instances collected from 30 subjects. It involves 6172
different activities including walking, walking upstairs, walking downstairs, sitting, standing, and lying.173
The sensors are the 3-axis accelerometer and 3-axis gyroscope (both are 50Hz) from Samsung Galaxy SII.174

UniMB SHAR (Micucci et al., 2017) contains 11.7k instances collected from 30 subjects. It involves 17175
different activities including 9 kinds of daily living activities and 6 kinds of fall activities. The sensor is the176
3-axis accelerometer (maximum 50Hz) from Samsung Galaxy Nexus I9250.177

HHAR (Stisen et al., 2015) contains 57k instances collected from 9 subjects. It involves 6 daily activities178
including biking, sitting, standing, walking, stair up, and stair down. The sensors are accelerometers from179
8 smartphones and 4 smart watches (sampling rate from 50Hz to 200Hz).180

3.2 Comparison with ANNs181

For ANN baselines, we select Convolutional Neural Networks (CNN) (Avilés-Cruz et al., 2019),182
DeepConvLSTM (DCL) (Mukherjee et al., 2020), Long Short Term Memory (LSTM) (Wang and Liu, 2020),183
and Transformer (Vaswani et al., 2017) architectures. We replace the ReLU neurons with spiking neurons,184
therefore, we can only integrate them into CNN and DeepConvLSTM since LSTM and Transformer have185
other activations like tanh and swish. The CNN architecture is marked by C32-MP2-C64-MP2-C64-MP2-186
FC, where each convolutional layer is a 1-dimensional convolution with a kernel size of 8. For DCL187
architecture, it is marked by C64-C64-C64-C64-LSTM64, where each convolutional layer uses a kernel188
size of 5. Dropout is applied in Artificial CNN and DCL to reduce redundant activations, but not in spiking189
CNN and DCL. Each result is averaged from 5 runs (random seeds from 1000 to 1004) and includes a190
standard deviation value.191

We summarize the results in Table 2, from which we find that SNNs have higher accuracy than the192
ANNs. For example, on the UniMB SHAR dataset, SpikeCNN has a 1.7% average accuracy improvement193
over its artificial CNN counterpart. Even more remarkably, the SpikeDeepConvLSTM (SpikeDCL) on the194
UCI-HAR dataset reaches 98.86% accuracy, which is 1% higher than DCL. Considering the accuracy is195
approaching 100%, the 1% improvement would be very significant. For UCI-HAR and HHAR datasets, we196
find SpikeCNN has similar accuracy to CNN, instead, the SpikeDeepConvLSTM consistently outperforms197
DeepConvLSTM, indicating that SNNs can be more coherent with the LSTM layer. Regarding the standard198
deviation of accuracy, we find that SNNs are usually more stable than ANNs, except for only one case,199
SpikeCNN on UCI-HAR.200

We also compare our SNN with existing methods using ANNs on three HAR datasets. The results are201
summarized in Table 3. It can be found that our method achieves higher accuracy compared to these202
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Table 4. Ablation study on the decay factor τ .

Dataset Model Decay Factor τ

0.0 0.25 0.5 0.75 1.0 Param

UCI-HAR (Anguita et al., 2013) SpikeCNN 95.48 95.63 95.78 96.40 95.92 96.11
SpikeDCL 94.36 96.50 97.57 98.86 96.60 97.37

SHAR (Micucci et al., 2017) SpikeCNN 93.54 94.04 93.48 93.85 74.68 93.54
SpikeDCL 89.53 92.08 90.93 90.10 60.55 91.53

baselines, demonstrating the effectiveness of our method. For instance, our SpikeCNN has 1.7% higher203
accuracy than the CNN used in Ronao and Cho (2016) and our SpikeDCL obtains 1.5% higher accuracy204
than the DCL proposed in Zhu et al. (2018).205

3.3 Ablation Studies206

In this section, we conduct ablation studies with respect to the (hyper)-parameters in the LIF neurons,207
including decay factor, threshold, and reset mechanism. We test SpikeDCL and SpikeCNN on UCI-HAR208
and SHAR datasets.209

3.3.1 The Effect of Decay Factor210

We select 5 fixed decay factors from {0.0, 0.25, 0.5, 0.75, 1.0}. Note that as discussed before τ = 0211
indicates no correlation between two consecutive time steps, therefore SNN becomes equivalent to212
Binary Activation Networks (BAN), while τ = 1 indicates full correlation. Additionally, we add another213
choice—parameterized τ—where the decay factor can be learned for each layer. This choice avoids the214
manual adjustments of the decay factor. Specifically, we initialize b = 0 and use τ = sigmoid(b) to215
represent the decay factor. The gradient w.r.t. c is given by216

∂L

∂b
=

T∑
t=1

∂L

∂s(t)
∂s(t)

∂v(t),pre

(
∂v(t),pre

∂τ

∂τ

∂b
+

t−1∑
t′=1

∂v(t),pre

∂v(t′)

∂v(t′)

∂v(t′),pre
∂v(t′),pre

∂τ

∂τ

∂b

)
. (6)

We provide all results in Table 4. We can find that τ has a huge impact on the final test accuracy. For the217
UCI-HAR dataset with SpikeDCL, the accuracy of τ = 0 is 94.36% while the accuracy of τ = 0.75 is218
98.86%. Additionally, if we compare other 0 < τ < 1 cases with τ = 0, we find that τ = 0 always produces219
a large deficiency. This indicates that considering the temporal correlation with τ > 0 is necessary for220
the time series tasks. It also verifies our hypothesis in Sec. 1 that simply using 1-bit without considering221
temporal information will degrade the accuracy. Moreover, for the SHAR dataset, the τ = 1 case only has222
60.55 accuracy while the τ = 0.25 case achieves 91.72% accuracy.223

It is also worthwhile to note that different datasets have varying optimal decay factor rates. The UCI-HAR224
favors 0.75 as its decay factor while the SHAR prefers 0.25. We think the primary reason for this change is225
that SHAR has sharper variation in its input and has a much larger range than UCI-HAR. Therefore, it226
should maintain a relatively low τ .227

As for the parameterized decay factor, we do not observe its superiority over the fixed decay factor model.228
The parameterized τ generally achieves decent performance but not the best.229
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Table 5. Ablation study on the firing threshold Vth and the reset mechanism.

Dataset Model Firing Threshold Vth Reset
0.25 0.5 0.75 1.0 Hard Soft

UCI-HAR (Anguita et al., 2013) SpikeCNN 95.71 96.40 96.18 96.11 96.09 96.40
SpikeDCL 98.27 98.86 97.60 96.81 98.53 98.73

SHAR (Micucci et al., 2017) SpikeCNN 93.91 94.04 93.89 93.87 92.75 94.04
SpikeDCL 91.42 92.08 91.72 91.53 91.13 92.08
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Figure 5. Hardware costs comparison between ANNs and SNNs on UCI-HAR and SHAR datasets,
respectively. We include sparsity and energy consumption.

3.3.2 The Effect of Firing Threshold230

We next study the effect of the firing threshold. Generally, the firing threshold is related to the easiness of231
firing a spike. We set the threshold as {0.25, 0.5, 0.75, 1.0} and run the same experiments with the former232
ablation. Here, through Table 5 we observe that the firing threshold has a unified pattern. SNN reaches233
its highest performance when the firing threshold is set to 0.5. This result is not surprising since 0.5 is in234
the mid of 0 and 1, and thus has the lowest error for the sign function. Meanwhile, we find the difference235
in accuracy brought by the firing threshold is lower than the decay factor. For instance, the largest gap236
when changing the threshold for SpikeDCL on the SHAR dataset is 0.65%, while this gap can be 32%237
when changing the decay factor. Therefore, the SNN is more sensitive to the decay factor rather than the238
threshold.239

3.3.3 The Effect of Reset Mechanism240

Finally, we verify the reset mechanism for SNNs, namely soft-reset and hard-reset. The results are sorted241
in Table 5. For all cases, the soft-reset mechanism is better than the hard-reset. We think the reason behind242
this is that the hard reset will directly set the membrane potential to 0, therefore cutting off the correlation243
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Figure 6. Training and validation curve on the SHAR dataset.

between intermediate time steps. Instead, the soft-reset keeps some previous time step’s information on244
membrane potential after firing.245

3.4 Hardware Performance Evaluation246

In this section, we compare the hardware performance between SNN and ANN. Here, we compare247
two metrics, namely the activation sparsity and the energy consumption. Higher sparsity can avoid more248
computations with weights in hardware that supports sparse computation. We measure the sparsity either249
in ReLU (ANNs) or in LIF (SNNs) and visualize them in Fig. 5 (blue chart). The ReLU in ANN usually250
has around 50% sparsity, an intuitive result since the mean of activation is around 0. LIF neurons, however,251
exhibit a higher sparsity, approximately 80%, probably due to the threshold for firing being larger than 0.252
As a result, SNNs can save more operations in inference.253

The second metric in hardware performance is energy consumption. We estimate the energy consumption254
by simulating the proposed hardware design in Sec. 2.5 together with our ReLU-based ANN baseline255
through the energy simulator proposed in (Yin et al., 2022). The overall energy we consider consists of256
two parts: computing energy and data-moving energy. SNNs have advantages in computing energy due to257
their binary activation and higher sparsity. The results are shown in Fig. 5 (right). It can be seen that SNNs258
consume up to 94% less energy than ANNs, which could largely promote the battery life in smart devices.259
However, in the image processing domain, SNNs may have higher data-moving energy because they need260
to store the membrane potential and access them in the future Yin et al. (2022, 2023); Moitra et al. (2023).261
We demonstrate that, in the HAR domain, SNNs have even lower data-moving energy than ANNs. The262
input data in HAR are augmented multiple times to generate the features in the time dimension. However,263
the SNNs in HAR do not need to increase the dimension of intermediate features to accommodate the time264
dimension resulting in lower data-moving costs. In summary, SNNs bring higher task performance due to265
the LIF neurons, and also energy efficiency due to the binary representation with high sparsity.266
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Figure 7. Feature Similarity Measure between ANN and SNN using CKA.

3.5 Convergence267

In this section, we visualize the convergence curves of both ANN and SNN. We record the training268
accuracy and validation accuracy during training for the CNN and DCL models. The curves are shown269
in Fig. 6. In the first figure, we can find that the CNN converges faster than the SpikeCNN. The training270
accuracy of ANN is always higher than the SNN. The validation accuracy of ANN also maintains its271
advantages at first, however, the validation accuracy of SNN becomes higher in the later stages. We272
conjecture that in the pure convolutional architecture, SNN is harder to be optimized than ANN and it may273
have a smaller generalization gap due to its binary activation.274

For the right side of Figure 5, we record the curves of DeepConvLSTM. It can be seen that SNN has275
faster convergence in this case. The validation accuracy of SNN is always higher than ANN. This result276
confirms that SNN is more coherent with LSTM layers.277

3.6 Representation Similarity278

In this section, we visualize the similarity between the ANN’s and SNN’s representation. We use Centered279
Kernel Alignment (CKA) (Kornblith et al., 2019; Li et al., 2023) to calculate the representation similarity280
index. We compare CNN and DCL on UCI-HAR and SHAR datasets. We compute the CKA value between281
convolutional or activation layers, for ReLU and LIF. Therefore, we can construct a heatmap with x, y282
axes being the layer index, and each entry is the CKA value of layers with those indices. The heatmaps283
are shown in Fig. 7. In general, we find that the first layer in ANN and SNN produces nearly the same284
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representation. As the network goes deep, the similarity becomes lower implying SNN’s latter layers extract285
different features from the HAR tasks as compared to ANNs. We can tentatively say that the difference in286
features may be the reason why SNNs and ANNs yield different accuracy on HAR tasks. We also discover287
that the shallow layers and the deep layers are very different, with a lower than 0.4 CKA value.288

4 CONCLUSION

In this paper, we have shown the supremacy of Spiking Neural Networks (SNNs) over Artificial Neural289
Networks (ANNs) on HAR tasks, which, to our best knowledge, is the first. Compared to the original290
ANNs, SNNs utilize their LIF neurons to generate spikes through time, bringing energy efficiency as291
well as temporally correlated non-linearity. Our results show that SNNs achieve competitive accuracy292
while reducing energy significantly, and thus demonstrate the advantage of SNNs for low-power wearable293
devices.294
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Figure 8. Enter the caption for your figure here. Repeat as necessary for each of your figures

Figure 2a. This is Subfigure 1.

Figure 2b. This is Subfigure 2.

Figure 2. Enter the caption for your subfigure here. (A) This is the caption for Subfigure 1. (B) This is the
caption for Subfigure 2.
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