
TYPE Original Research

PUBLISHED 31 July 2023

DOI 10.3389/fnins.2023.1230002

OPEN ACCESS

EDITED BY

Mohammed Fouda,

University of California, Irvine, United States

REVIEWED BY

Yang Li,

Chinese Academy of Sciences (CAS), China

Aili Wang,

International Campus, Zhejiang University,

China

Jie Yang,

Dalian University of Technology, China

Fang Liu,

Dalian University of Technology, China, in

collaboration with senior researcher reviewer

JY

*CORRESPONDENCE

Youngeun Kim

youngeun.kim@yale.edu

RECEIVED 27 May 2023

ACCEPTED 13 July 2023

PUBLISHED 31 July 2023

CITATION

Kim Y, Li Y, Moitra A, Yin R and Panda P (2023)

Sharing leaky-integrate-and-fire neurons for

memory-e�cient spiking neural networks.

Front. Neurosci. 17:1230002.

doi: 10.3389/fnins.2023.1230002

COPYRIGHT

© 2023 Kim, Li, Moitra, Yin and Panda. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Sharing leaky-integrate-and-fire
neurons for memory-e�cient
spiking neural networks

Youngeun Kim*, Yuhang Li, Abhishek Moitra, Ruokai Yin and

Priyadarshini Panda

Department of Electrical Engineering, Yale University, New Haven, CT, United States

Spiking Neural Networks (SNNs) have gained increasing attention as

energy-e�cient neural networks owing to their binary and asynchronous

computation. However, their non-linear activation, that is Leaky-Integrate-and-

Fire (LIF) neuron, requires additional memory to store a membrane voltage to

capture the temporal dynamics of spikes. Although the required memory cost

for LIF neurons significantly increases as the input dimension goes larger, a

technique to reduce memory for LIF neurons has not been explored so far. To

address this, we propose a simple and e�ective solution, E�cientLIF-Net, which

shares the LIF neurons across di�erent layers and channels. Our E�cientLIF-Net

achieves comparable accuracy with the standard SNNs while bringing up to

∼4.3× forward memory e�ciency and ∼21.9× backward memory e�ciency for

LIF neurons. We conduct experiments on various datasets including CIFAR10,

CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we

show that our approach also o�ers advantages on Human Activity Recognition

(HAR) datasets, which heavily rely on temporal information. The code has been

released at https://github.com/Intelligent-Computing-Lab-Yale/E�cientLIF-Net.

KEYWORDS

spiking neural network, image recognition, event-based processing, energy-e�cient

deep learning, neuromorphic computing

1. Introduction

Spiking Neural Networks (SNNs) have gained significant attention as a promising

candidate for low-power machine intelligence (Wu et al., 2018, 2019; Roy et al., 2019; Fang

et al., 2021a; Kundu et al., 2021; Christensen et al., 2022). By mimicking biological neuronal

mechanisms, Leaky-Integrate-and-Fire (LIF) neurons in SNNs convey visual information

with temporal binary spikes over time. The LIF neuron (Liu and Wang, 2001) considers

temporal dynamics by accumulating incoming spikes inside a membrane potential, and

generates output spikes when the membrane potential voltage exceeds a firing threshold.

Such binary and asynchronous operation of SNNs incurs energy-efficiency benefits on low-

power neuromorphic hardware (Furber et al., 2014; Akopyan et al., 2015; Davies et al., 2018;

Orchard et al., 2021).

Although SNN brings computational efficiency benefits, memory overhead caused by

LIF neurons can be problematic. As shown in Figure 1, LIF neurons require additional

memory for storing the membrane potential value which changes over time. This is not the

case for the traditional Artificial Neural Networks (ANNs) where most non-linear activation

functions are parameter-free (e.g.ReLU, Sigmoid). At the same time, LIF neurons occupy a

large portion of memory with the high-resolution input image (Figure 1). For instance, the

LIF memory takes 53% of memory overhead in the case of ResNet19 (He et al., 2016) with a

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1230002
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1230002&domain=pdf&date_stamp=2023-07-31
mailto:youngeun.kim@yale.edu
https://doi.org/10.3389/fnins.2023.1230002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1230002/full
https://github.com/Intelligent-Computing-Lab-Yale/EfficientLIF-Net
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

FIGURE 1

Motivation of our work. Left: Comparison between neurons in ANNs and SNNs: Unlike ReLU neurons, which do not require any parameters, LIF

neurons maintain a membrane potential with voltage values that change across timesteps. Right: Memory cost breakdown for the Spiking-ResNet19

architecture during inference on an image with a resolution of 224× 224.

224×224 image. This analysis assumes 32-bit weight parameters, 1-

bit spike activation, and 32-bit allocation for membrane potential.

A more comprehensive analysis is provided in the “Memory Cost

Break” subsection of Section 5.3.

Unfortunately, the LIF memory overhead has been overlooked

so far in SNN studies.

To address this, we propose EfficientLIF-Net where we share

the LIF neurons across different layers and channels. By sharing the

memory, we do not need to assign separate memory for each layer

and channel. For layer-wise sharing, we use common LIF neurons

across layers having the same activation size, such as layers in one

ResNet block (He et al., 2016). For channel-wise sharing, we equally

divide the LIF neurons into multiple groups through the channel

dimension and share common LIF neurons across different groups.

Surprisingly, our EfficientLIF-Net provides similar performance

as the standard SNN models where each layer and channel has

independent LIF neurons. We show the gradient can successfully

flow back through all layers, thus the weight can be trained to

consider the temporal dynamics of spike information.

Furthermore, the proposed EfficientLIF-Net brings huge

benefits to saving memory costs during training. Spatio-temporal

operation inside SNNs incurs a huge computational graph for

computing backward gradients. Each LIF neuron needs to store

membrane potential to make gradients flow back, where the

training memory increases as the SNN goes deeper and uses larger

timesteps. This huge computational graph often is difficult to be

trained on the limited GPU memory (Liang et al., 2021; Singh

et al., 2022; Yin et al., 2022). In this context, since our architecture

shares the membrane potential across all layers, we can compute

each layer’s membrane potential from the next layer’s membrane

potential real-time during backward step. This enables us to

perform backpropagation without the need for storing/caching the

membrane potentials of all layers in memory (from the forward

step).

Our contributions can be summarized as follows:

• We pose the memory overhead problem of LIF neurons in

SNNs, where the memory cost significantly increases as the

image size goes larger.

• To address this, we propose a simple and effective architecture,

EfficientLIF-Net where we share the LIF neurons across

different layers and channels.

• EfficientLIF-Net also reduces memory cost during training

by computing each layer’s (channel’s) membrane potential

from the next layer’s (channel’s) membrane potential real-

time during backward step, drastically reducing the caching

of membrane potentials.

• We conduct experiments on five public datasets, validating

EfficientLIF-Net can achieve comparable performance as the

standard SNNs while bringing up to ∼4.3× forward memory

efficiency and up to ∼21.9× backward memory efficiency for

LIF neurons.

• We also observe that the LIF memory cost problem exists

in pruned SNNs and in fact the LIF memory overhead

percentage goes higher when the weight sparsity goes higher.

Our EfficientLIF-Net successfully reduces the LIF memory

cost to ∼23% in pruned SNNs while achieving iso-accuracy

compared to the pruned baseline.

2. Related work

2.1. Spiking neural networks

Different from the standard Artificial Neural Networks

(ANNs), Spiking Neural Networks (SNNs) convey temporal spikes

(Roy et al., 2019; Christensen et al., 2022). Here, Leaky-Integrate-

and-Fire (LIF) neuron plays an important role as the non-linear

activation. The LIF neurons have a “memory” called membrane

potential, where the incoming spikes are accumulated. Output

spikes are generated if the membrane potential exceeds a firing

threshold, then the membrane potential resets to zero. This firing

operation of LIF neurons is non-differentiable, so the previous

SNN literature has focused on resolving the gradient problem. A

widely-used training technique is converting pre-trained ANNs

to SNNs using weight or threshold balancing (Diehl et al., 2015;

Rueckauer et al., 2017; Sengupta et al., 2019; Han et al., 2020; Li

et al., 2021a). However, such methods require large number of

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

timesteps to emulate float activation using binary spikes. Recently,

a line of works propose to circumvent the non-differentiable

backpropagation problem by defining a surrogate function (Lee

et al., 2016, 2020; Shrestha and Orchard, 2018; Wu et al., 2018,

2020, 2021; Neftci et al., 2019; Li et al., 2021b; Kim et al., 2022a).

As the weight is trained to consider temporal dynamics, they show

both high performance and short latency. Recent studies have

expanded our understanding of Spiking Neural Networks (SNNs)

and proposed novel approaches to overcome some of their inherent

challenges. Hao et al. (2023) explores the issue of unevenness error

in the conversion of ANNs to SNNs and introduces an optimization

strategy based on residual membrane potential to mitigate this

error, achieving state-of-the-art performance on several datasets.

Li and Zeng (2022) examine the conversion of ANNs to SNNs

from a different angle, addressing performance degradation and

time delays. The authors propose a neuron model for releasing

burst spikes and a novel method, Lateral Inhibition Pooling,

to resolve inaccuracies caused by the MaxPooling operation

during the conversion process. Che et al. (2022) present a spike-

based differentiable hierarchical search (SpikeDHS) framework,

providing efficient architecture search and training for SNNs.

The authors also propose an innovative approach to optimize

the surrogate gradient function, enhancing the performance of

SNNs in various classification tasks. Lastly, paper (Guo et al.,

2022a) introduces Information Maximization Loss (IM-Loss) to

maximize the information flow in SNNs and proposes a novel

differentiable spike activity estimation, Evolutionary Surrogate

Gradients (ESG), which enhances bothmodel convergence and task

performance. Although the previous methods have made huge

advances in terms of improving the performance, they assume

that SNNs have different LIF neurons for different layers and

channels, which imposes a huge memory overhead in both forward

and backward.

2.2. Compression methods for e�cient
SNNs

Due to the energy-efficiency benefit of SNNs, they can be

suitably implemented on edge devices with limited memory

storage (Skatchkovsky et al., 2020; Venkatesha et al., 2021; Yang

et al., 2022). Therefore, a line of work has proposed various

methods to reduce the memory cost for SNNs using compression

techniques. Neural pruning is one of the effective methods for

SNN compression. Several works (Neftci et al., 2016; Rathi et al.,

2018) have proposed a post-training pruning technique using a

threshold value. Unsupervised online adaptive weight pruning

(Guo et al., 2020) dynamically prunes trivial weights over time.

Shi et al. (2019) prune weight connections during training with

a soft mask. Recently, deeper SNNs are pruned with ADMM

optimization tool (Deng et al., 2021), gradient-based rewiring

(Chen et al., 2021), and lottery ticket hypothesis (Kim et al.,

2022b). Meanwhile, various quantization techniques also have

been proposed to compress SNNs (Datta et al., 2022; Guo et al.,

2022b; Li et al., 2022a; Meng et al., 2022). Schaefer and Joshi (2020)

propose integer fixed-point representations for neural dynamics,

weights, loss, and gradients. The recent work (Chowdhury et al.,

2021a) performs quantization through temporal dimension

for low-latency SNNs. Lui and Neftci propose a quantization

technique based on the Hessian of weights (Lui and Neftci,

2021). Nonetheless, no prior work has explicitly addressed the

memory overhead caused by LIF neurons. Our method effectively

reduces memory overhead by modifying the architecture, and is

orthogonal to previous methods. Thus, combining EfficientLIF-

Net with compression techniques will further compound

the benefits.

3. Preliminaries

3.1. Leaky integrate-and-fire neuron

In our paper, we mainly address the memory cost from a Leaky-

Integrate-and-Fire (LIF) neuron, which is widely adopted in SNN

works (Wu et al., 2018, 2020, 2021; Lee et al., 2020; Fang et al.,

2021a,b; Li et al., 2021a,b; Kim et al., 2022a). Suppose LIF neurons

in l-th layer have membrane potential Ut
l
at timestep t, we can

formulate LIF neuron dynamics as:

Ut
l = λUt−1

l
+WlO

t
l−1, (1)

whereWl is weight parameters in layer l,Ot
l−1

represents the spikes

from the previous layer, λ is a decaying factor in the membrane

potential. Note, we use uppercase letters for matrix notation. The

LIF neuron generates an output spike Ot
l
when the membrane

potential exceeds the firing threshold θ . Here, we define the spike

firing function as:

f (Ut
l ) = Ot

l =

{

1 if Ut
l
> θ

0 otherwise
. (2)

After firing, the membrane potential can be reset to zero

(i.e.hard reset), or reduced by the threshold value (i.e.soft reset).

Thus, a LIF neuron always stores the membrane potential to

capture the temporal information of spikes. The memory cost for

LIF neurons is proportional to the input image dimension, which

poses a huge memory overhead for high-resolution data such as

ImageNet (Deng et al., 2009).

3.2. Gradient backpropagation in SNNs

For the class probability prediction, we accumulate the final-

layer activation across all timesteps, followed by the Softmax

function. We apply cross-entropy loss L for training the weights

parameters. The backward gradients are calculated in both spatial

and time axis (Wu et al., 2018; Neftci et al., 2019) according to the

chain rule:

∂L

∂Wl
=
∑

t

(
∂L

∂Ot
l

∂Ot
l

∂Ut
l

+
∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l

)
∂Ut

l

∂Wl
. (3)

Here, the gradient of output spikes with respect to the

membrane potential
∂Ot

l

∂Ut
l

is non-differentiable. Following

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

FIGURE 2

Illustration of the proposed E�cientLIF-Net. (A) Conventional SNNs where each layer and channel has separate LIF neurons. (B–D) is our proposed

E�cientLIF-Net which shares LIF neurons across layer, channel, and layer & channel. (A) Baseline SNN. (B) Cross-layer sharing. (C) Cross-channel

sharing. (D) Cross-layer & channel sharing.

FIGURE 3

Illustration of an unrolled computational graph for the backpropagation. Black solid arrows and gray dotted arrows represent forward and backward

paths, respectively. For simplicity, we omit the reset path from the spike output. (A) Baseline SNN. (B) Cross-layer sharing. (C) Cross-channel sharing.

previous work (Fang et al., 2021a), we use arctan() to

approximate gradients, i.e.we use an approximate function

f (x) = 1
π
arctan(πx) + 1

2 for computing gradients of
∂Ot

l

∂Ut
l

. The overall computational graph is illustrated in

Figure 3A.

4. Methodology: E�cientLIF-Net

In this section, we first describe the details of how we reduce

the memory cost of LIF neurons across layers and channels.

The overall concept of EfficientLIF-Net is illustrated in Figure 2.

After that, we provide the analysis of the backward gradient

in EfficientLIF-Net for training, which shows our EfficientLIF-

Net successfully considers the entire time horizon. Finally, we

show the memory advantage of our EfficientLIF-Net during

backpropagation.

4.1. Sharing memory of LIF neurons

4.1.1. Cross-layer sharing
The key idea here is sharing the LIF neurons across different

layers where they have the same output activation size. Thus, LIF

neurons are shared across multiple subsequent layers before the

layer increases channel size or reduces spatial resolution. Such

architecture design can be easily observed in CNN architectures

such as ResNet (He et al., 2016).

Let’s assume the networks have the same activation size from

the l-th layer to the (l + m)-th layer. The membrane potential of

the (l + 1)-th layer is calculated by adding the previous layer’s

membrane potential and weighted spike output from the previous

layer:

Ut
l+1 = λ(Ut

l − Ot
l )+Wl+1O

t
l . (4)

Here the previous layer’s membrane potential Ut
l
decreases its

value by the threshold for soft reset (firing threshold is set to 1)

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

after it generates spikes Ot
l
. After that, decay factor λ is applied to

the previous layer’s membrane potential, since we aim to dilute the

previous layers’ information as networks go deeper. The layer (l+1)

generates output spike following Eq. 2:

Ot
l+1 = f (Ut

l+1). (5)

In the same timestep, the spike information goes through all

layers (from l-th layer to l+m-th layer) with Eqs. 4 and 5 dynamics.

Then, the membrane potential of layer l + m is shared with layer l

at the next timestep (purple arrow in Figure 3B).

Ut+1
l

= λ(Ut
l+m − Ot

l+m)+WlO
t+1
l−1

, (6)

where the soft reset and decaying is applied to Ut
l+m

, and the

weighted input comes from layer l− 1.

Overall, we require only one-layer LIF memory for layer l ∼

layer (l + m) computation, which is shared across all layers and

timesteps. Thus, LIF memory of layers l ∼ (l + m) can be reduced

by 1
m . The overall computational graph is illustrated in Figure 3B.

4.1.2. Cross-channel sharing
We also explore the neuron sharing scheme in the channel

dimension. Let Xl be the weighted input spike, i.e. Xl = WlO
t
l−1

,

then we first divide the weighted input spike tensor into N groups

in channel axis.

Xt
l → [X

t,(1)
l

,X
t,(2)
l

, ...,X
t,(N)
l

]. (7)

Suppose Xt
l
∈ R

C×H×W , then the spike of each group can be

represented as X
t,(i)
l

∈ R
C
N×H×W , i ∈ {1, 2, ...,N}. Here, C,H,W

represent the size of channel, height, and width, respectively. Then,

the LIF neurons can be sequentially shared across different groups

(i.e.different channels) of weighted input spike. The membrane

potential of (i+ 1)-th group at layer l can be formulated as:

U
t,(i+1)
l

= λ(U
t,(i)
l

− O
t,(i)
l

)+ X
t,(i+1)
l

, (8)

where U
t,(i)
l

is the membrane potential of the previous group, and

X
t,(i+1)
l

is the incoming weighted spike input of the (i+1)-th group

from the previous layer. Here, soft reset and decaying also applied.

The output spikes of each group are generated by standard firing

dynamics (Eq. 2):

O
t,(i)
l

= f (U
t,(i)
l

). (9)

We concatenate the output spikes of each groups through

channels in order to compute the output at timestep t:

Ot
l = [O

t,(1)
l

,O
t,(2)
l

, ...,O
t,(N)
l

]. (10)

After completing the LIF sharing in timestep t, we share the last

group’s (i.e.group N) membrane potential to the first group in the

next timestep t + 1.

U
t+1,(1)
l

= λ(U
t,(N)
l

− O
t,(N)
l

)+ X
t+1,(1)
l

. (11)

By using cross-channel sharing, the memory cost for LIF

neuron of one layer can be reduced by 1
N , where N is the number

of groups. Thus, memory-efficiency will increase as we use larger

group number.

4.1.3. Cross-layer & channel sharing
The cross-layer and cross-channel sharing methods

are complementary to each other, therefore they can be

used together to bring further memory efficiency. The

LIF neurons are shared across channels and layers as

shown in Figure 2D. The neuron-sharing mechanism can

be obtained by combining cross-layer and cross-channel

sharing methods.

Let’s assume the networks have the same activation size from

the l-th layer to the (l+m)-th layer. The sharing mechanism in one

layer is the same as channel sharing (Eq. 7∼ 9).

Thus, the output spikes of each group through channels in

order to compute the output at timestep t:

Ot
l = [O

t,(1)
l

,O
t,(2)
l

, ...,O
t,(N)
l

]. (12)

After completing the LIF sharing at layer l, we share the last

group’s (i.e.group N) membrane potential of l-th layer to the first

group of l+ 1-th layer.

U
t,(1)
l+1

= λ(U
t,(N)
l

− O
t,(N)
l

)+ X
t,(1)
l+1

. (13)

Here, Xt
l
stands for the weighted input spike, i.e. Xt

l
= WlO

t
l−1

.

In the same timestep, the spike information goes through all layers

(from l-th layer to l + m-th layer) dynamics. Then, the last group’s

(i.e.group N) membrane potential of layer l +m is shared with the

first group of layer l at the next timestep.

U
t+1,(1)
l

= λ(U
t,(N)
l+m

− O
t,(N)
l+m

)+ X
t+1,(1)
l

. (14)

By using cross-channel sharing, the memory cost of LIF neuron

for layer l ∼ layer (l+m) computation can be reduced by 1
mN , where

N is the number of groups. Our experimental results show that

although we combine two sharingmethods, we still get iso-accuracy

as the standard SNNs.

4.2. Gradient analysis

Sharing LIF neurons leads to different gradient paths compared

to standard SNNs. Therefore, we provide the gradient analysis for

EfficientLIF-Net.

4.2.1. Gradient of cross-layer sharing
Suppose that we compute the gradients for m subsequent

layers where they have the same activation size. For simplicity, we

call these m subsequent layers as a “sharing block”. The unrolled

computational graph is illustrated in Figure 3B.

For the intermediate layers of the sharing block, the gradients

flow back from the next layer (marked as 1© in Figure 3B), which

can be formulated as:

∂L

∂Wl
=
∑

t

(

∂L

∂Ot
l

∂Ot
l

∂Ut
l

+
∂L

∂Ut
l+1

∂Ut
l+1

∂Ut
l

)

∂Ut
l

∂Wl
, (15)

where both terms are derived by the forward dynamics

in Eq. 4. For the final layer of the sharing block,

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

FIGURE 4

Memory-e�cient backpropagation. Compared to baseline, we do not need to store an intermediate membrane potential for backpropagation.

Instead, we perform a reverse computation on the membrane potential from the next layers/channels. (A) Baseline. (B) Cross-layer. (C)

Cross-channel.

FIGURE 5

Visualization of the potential hardware mapping of the two sharing methods. We provide some hardware insights on the potential hardware benefits

we can get from the E�cientLIF-Net. (A) Cross-layer sharing. (B) Cross-channel sharing.

the gradients flow back through both layer and

temporal axis:

∂L

∂Wl+m
=
∑

t

(

∂L

∂Ot
l+m

∂Ot
l+m

∂Ut
l+m

+
∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l+m

)

∂Ut
l+m

∂Wl+m
. (16)

The first term shows the gradient from the next layer

(marked as 2© in Figure 3B), and the second term is from

the first layer of the sharing block at the next timestep

(marked as 3© in Figure 3B). The last layer of the sharing

block obtains the gradients from the next timestep (marked as

3©) which is then, propagated through the intermediate layers.

This allows the weight parameters to be trained with temporal

information, achieving similar performance as the standard

SNN architecture.

4.2.2. Gradient of cross-channel sharing
Assume that we divide the channel into N groups.

We define an index set G = {1, 2, ...,N}. Then,

the gradients of weight parameters in layer l can be

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

computed as:

∂L

∂Wl
=
∑

t

∑

i∈G

∂L

∂O
t,(i)
l

∂O
t,(i)
l

∂U
t,(i)
l

∂U
t,(i)
l

∂Xt
l

∂Xt
l

∂Wl

+
∑

t

∑

i∈G\{N}

∂L

∂U
t,(i+1)
l

∂U
t,(i+1)
l

∂U
t,(i)
l

∂U
t,(i)
l

∂Xt
l

∂Xt
l

∂Wl

+
∑

t

∂L

∂U
t+1,(1)
l

∂U
t+1,(1)
l

∂U
t,(N)
l

∂U
t,(N)
l

∂Xt
l

∂Xt
l

∂Wl
.

(17)

The first term represents the gradient from the next

layer (marked as 1© in Figure 3C). The second term is

the gradients from the next group’s membrane potential

except for the last group (marked as 2© in Figure 3C).

The last term represents the gradients from the first group

of the next timestep (marked as 3© in Figure 3C). Thus,

the gradients propagate through both temporal and spatial

dimension, training weight parameters to consider the temporal

information.

4.3. Memory-e�cient backpropagation

In addition to the memory efficiency in forward propagation,

our EfficientLIF-Net saves memory costs during backward gradient

computation. As shown in Figure 4A, the standard SNNs need to

store all membrane potential to compute the gradient such as
∂Ut+1

l

∂Ut
l

in Eq. 3. However, saving the full-precision membrane potential of

LIF neurons is costly.

4.3.1. Backpropagation in cross-layer sharing
The key idea here is that the membrane potential of the

previous layer can be computed from the next layer’s membrane

potential in a reverse way (Figure 4B). Thus, without storing the

membrane potential of the intermediate layers during forward, we

can compute the backward gradient. By reorganizing Eqs. 4 and

6, we obtain the membrane potential of the previous layer or the

previous timestep.

{

Ut
l
= 1

λ
(Ut

l+1
−Wl+1O

t
l
)+ Ot

l
. from Eq. 4

Ut
l+m

= 1
λ
(Ut+1

l
−WlO

t+1
l−1

)+ Ot
l+m

. from Eq. 6
(18)

Based on this, we can compute
∂Ut

l+1

∂Ut
l

in Eq. 15, and
∂Ut+1

l

∂Ut
l+m

in Eq.

16, without storing the intermediate membrane potential.

4.3.2. Backpropagation in cross-channel sharing
In a similar way, we can also reduce memory cost through

channel dimension by performing a reverse computation on the

membrane potential of channel groups (Figure 4C). Instead of

storing a memory for all channels, we use a partial memory for

storing the membrane potential of the last group channel of each

layer. From Eq. 8 and 11, we calculate the membrane potential of

the previous channel group or the previous timestep.

{

U
t,(i)
l

= 1
λ
(U

t,(i+1)
l

− X
t,(i+1)
l

)+ O
t,(i)
l

. from Eq. 8

U
t,(N)
l

= 1
λ
(U

t+1,(1)
l

− X
t+1,(1)
l

)+ O
t,(N)
l

. from Eq. 11
(19)

This reverse computation allows us to compute
∂U

t,(i+1)
l

∂U
t,(i)
l

and

∂U
t+1,(1)
l

∂U
t,(N)
l

in Eq. 17, without storing the intermediate membrane

potential.

Note that our approach does not modify the structure of the

backpropagation graph. Instead, it optimizes memory usage by

replacing previous memory values with those required for gradient

computation. After calculating the gradient for a specific timestep

or layer, it becomes unnecessary to maintain the intermediate

variables. This strategy enables us to repurpose that memory for

future gradient computations, creating a more hardware-efficient

solution.

4.4. Hardware discussion

In this section, we aim to provide insights into the role that

EfficientLIF-Net will play during hardware deployment.

4.4.1. Cross-layer Sharing
Cross-layer sharing EfficientLIF-Net can largely benefit

hardware implementation with reduction of memory

communication. When deploying an SNN on hardware, one can

either choose to process through all the layers and then repeat for

all timesteps (standard) or first process through all timesteps and

then proceed to the next layer [tick-batch (Narayanan et al., 2020)].

While the tick-batch can help to reduce the number of memory

communication across timesteps, it requires more hardware

resources. On the other hand, with a proper processing pipeline

across layers, the standard way of processing SNNswill have smaller

hardware resource requirement and larger throughput. And cross-

layer sharing can further reduce the memory communication

overhead of the standard SNN processing.

As we show in Figure 5A, instead of writing the membrane

potential to the memory for every layer and every timestep, layer-

sharing EfficientLIF-Net requires only one time of writing to

memory for each shared layer for each timestep.

4.4.2. Cross-channel Sharing
Due to the high level of parallelism and data reuse in these

designs, we are focusing on examining the effects of cross-

channel sharing on EfficientLIF-Net for ASIC systolic array-

based inference accelerators for SNNs (Narayanan et al., 2020;

Lee et al., 2022; Yin et al., 2022). The key idea behind this

group of designs is to broadcast input spikes and weights

to an array of processing elements (PEs), where accumulators

perform convolution operations. Each post-synaptic neuron’s

entire convolution operation is mapped to one dedicated PE. Once

the convolution results are ready, they are sent to the LIF units

inside the PE to generate the output spikes. LIF units are notorious

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

TABLE 1 Accuracy and LIF memory cost (Forward & Backward) comparison between baseline (i.e.standard SNN) and our E�cientLIF-Net.

VGG16

Dataset Methods Acc (%) LIF forward memory (MB) LIF backward memory (MB)

CIFAR10

Baseline 91.31 1.80 9.0

EfficientLIF-Net [L] 90.23 1.23 1.23

EfficientLIF-Net [C#2] 90.30 0.90 0.90

EfficientLIF-Net [L+C#2] 90.09 0.62 0.62

CIFAR100

Baseline 66.83 1.80 9.0

EfficientLIF-Net [L] 65.01 1.23 1.23

EfficientLIF-Net [C#2] 64.92 0.90 0.90

EfficientLIF-Net [L+C#2] 64.85 0.62 0.62

TinyImageNet

Baseline 56.11 7.22 36.1

EfficientLIF-Net [L] 55.14 4.91 4.91

EfficientLIF-Net [C#2] 55.43 3.61 3.61

EfficientLIF-Net [L+C#2] 55.36 2.46 2.46

ImageNet-100

Baseline 73.81 88.43 442.15

EfficientLIF-Net [L] 73.22 60.10 60.10

EfficientLIF-Net [C#2] 72.65 44.21 44.21

EfficientLIF-Net [L+C#2] 72.14 30.05 30.05

N-Caltech101

Baseline 64.40 4.06 40.6

EfficientLIF-Net [L] 63.50 2.76 2.76

EfficientLIF-Net [C#2] 64.02 2.03 2.03

EfficientLIF-Net [L+C#2] 63.10 1.38 1.38

ResNet19

Dataset Methods Acc (%) LIF forward memory (MB) LIF backward memory (MB)

CIFAR10

Baseline 92.26 2.88 14.40

EfficientLIF-Net [L] 91.99 1.31 1.31

EfficientLIF-Net [C#2] 91.92 1.44 1.44

EfficientLIF-Net [L+C#2] 91.73 0.66 0.66

CIFAR100

Baseline 70.89 2.88 14.40

EfficientLIF-Net [L] 70.14 1.31 1.31

EfficientLIF-Net [C#2] 70.01 1.44 1.44

EfficientLIF-Net [L+C#2] 69.99 0.66 0.66

TinyImageNet

Baseline 56.74 11.5 57.5

EfficientLIF-Net [L] 55.20 5.25 5.25

EfficientLIF-Net [C#2] 55.44 5.75 5.75

EfficientLIF-Net [L+C#2] 55.10 2.63 2.63

ImageNet-100

Baseline 79.38 140.88 704.4

EfficientLIF-Net [L] 79.44 64.31 64.31

EfficientLIF-Net [C#2] 78.92 70.44 70.44

EfficientLIF-Net [L+C#2] 78.88 32.16 32.16

N-Caltech101

Baseline 66.27 6.47 64.7

EfficientLIF-Net [L] 65.82 2.95 2.95

EfficientLIF-Net [C#2] 66.01 3.24 3.24

EfficientLIF-Net [L+C#2] 65.45 1.48 1.48

Here, EfficientLIF-Net[L], EfficientLIF-Net[C#2], EfficientLIF-Net[L+C#2] denote EfficientLIF with cross-layer, cross-channel (#group=2), and cross-layer & channel sharing, respectively.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

for their high hardware overheads. This is because we need at least

one buffer to hold the full precision membrane potential for each

neuron. These buffers heavily contribute to the hardware cost of

LIF units. Originally, all the prior designs (Narayanan et al., 2020;

Lee et al., 2022; Yin et al., 2022) equipped each of the PEs with

an LIF unit inside to match the design’s throughput requirements.

That means, for 128 PE array, we will need 128 LIF units. Even if

the number of LIF units is reduced, there is no way to reduce the

number of buffers required to hold the uniquemembrane potentials

for each LIF neuron.

Based on this design problem, we can instantly realize one

advantage that cross-channel sharing EfficientLIF can bring in

these hardware platforms. Depending on the number of cross-

channel shared LIF neurons, we can have the same ratio of LIF

units and buffer reduction at the hardware level, as we show in

Figure 5B. For example, in the case of C#4 shared networks, we can

manage to reduce the 128 LIF units in a 128 PE array (Narayanan

et al., 2020; Lee et al., 2022; Yin et al., 2022) to 32. However, the

shared LIF units will bring longer latency as a trade-off. In the

case of C#4, originally, one cycle was needed to generate spikes

from 128 post-synaptic neurons for one timestep. Now, we will

need 4 cycles instead. However, the major portion of latency still

lies in the convolution and memory operations, which is typically

hundreds of times larger than the cycles needed for generating

spikes through LIF units. We provide experimental results in

Section V.C to further illustrate the effects of EfficientLIF-Net on

hardware.

5. Experiments

5.1. Implementation details

We evaluate our method on four static image datasets

[i.e.CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky

et al., 2009), TinyImageNet (Deng et al., 2009), ImageNet-

100 (Deng et al., 2009)], and one spiking dataset [i.e.N-

Caltech101(Orchard et al., 2015)]. Here, ImageNet-100 is the subset

of ImageNet-1000 dataset (Deng et al., 2009). We use VGG16

(Simonyan and Zisserman, 2015) and ResNet19 (He et al.,

2016). For both architectures, we use the scaled-up channel size

following previous SNN works (Zheng et al., 2020; Li et al.,

2022b). We train the SNNs with 128 batch samples using SGD

optimizer with momentum 0.9 and weight decay 5e-4. The initial

learning rate is set to 0.1 and decayed with cosine learning rate

scheduling (Loshchilov and Hutter, 2016). We set the total number

of epochs to 300 for CIFAR10, CIFAR100, and N-Caltech101, and

140 for TinyImageNet and ImageNet-100, respectively. We use

timesteps T = 5 across all experiments.

5.2. Performance comparison

Across all experiment sections, EfficientLIF-Net[L] denotes the

cross-layer sharing scheme, EfficientLIF-Net[C#N] stands for the

cross-channel sharing scheme with N channel groups. EfficientLIF-

Net[L+C#N]means the cross-layer & channel sharing method.

In Table 1, we show the memory benefit from EfficientLIF-

Net. We assume a 32-bit representation for membrane potential

in LIF neurons. Regarding the backward LIF memory of baseline,

we consider the standard backpropagation method which stores

membrane potential across entire timesteps (Liang et al., 2021;

Singh et al., 2022; Yin et al., 2022).

The experimental results show the following observations:

(1) The EfficientLIF-Net based on ResNet19 achieves a similar

performance compared to the baseline, which implies that the

proposed membrane sharing strategy still can learn temporal

information in spikes. (2) The EfficientLIF-Net also can be applied

to the DVS dataset. (3) The ResNet19 EfficientLIF-Net achieves

less performance degradation compared to VGG16, which implies

that skip connection improves training capability in EfficientLIF-

Net. Furthermore, ResNet19 brings higher memory efficiency since

it has more layers with similar sized activation. (4) As expected,

a large-resolution image dataset has more benefits compared to

a small-resolution image dataset. For instance, EfficientLIF-Net

[L+C#2] saves 108.72MB and 672.24MB for forward and backward

path, respectively, on ImageNet-100 which consists of 224 ×

224 resolution images, on the other hand, the same architecture

FIGURE 6

Analysis on Training Dynamics. Unit: accuracy (%). We investigate whether the trained weight parameters can be compatible with other architectures.

(A) CIFAR10. (B) TinyImageNet.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

TABLE 2 Ablation on the number of groups in cross-channel

E�cientLIF-Net with ResNet19 architecture.

Dataset Methods Acc (%) LIF memory
for Fw & Bw

(MB)

CIFAR10

EfficientLIF-Net [C#2] 91.92 1.44

EfficientLIF-Net [C#4] 91.73 0.72

EfficientLIF-Net [C#8] 91.21 0.36

TinyImageNet

EfficientLIF-Net [C#2] 55.44 5.75

EfficientLIF-Net [C#4] 55.06 2.88

EfficientLIF-Net [C#8] 54.84 1.44

ImageNet-100

EfficientLIF-Net [C#2] 78.92 70.44

EfficientLIF-Net [C#4] 78.24 35.22

EfficientLIF-Net [C#8] 78.12 17.61

TABLE 3 Performance of combing cross-layer sharing and group

convolution on ResNet 19 architecture.

Dataset Methods #Conv. group Acc (%)

CIFAR10

EfficientLIF-Net [C#2] 2 91.42

EfficientLIF-Net [C#4] 4 90.45

EfficientLIF-Net [C#8] 8 87.38

CIFAR100

EfficientLIF-Net [C#2] 2 69.26

EfficientLIF-Net [C#4] 4 66.42

EfficientLIF-Net [C#8] 8 60.20

TinyImageNet

EfficientLIF-Net [C#2] 2 53.65

EfficientLIF-Net [C#4] 4 51.39

EfficientLIF-Net [C#8] 8 42.86

N-Caltech

EfficientLIF-Net [C#2] 2 64.98

EfficientLIF-Net [C#4] 4 60.94

EfficientLIF-Net [C#8] 8 55.12

saves 2.22 MB (forward) and 13.74 MB (backward) on CIFAR10.

Here, we report the theoretical calculations. Our results imply the

membrane potential is not as important for SNNs. This observation

has been presented in the previous work Chowdhury et al. (2021b);

Li et al. (2023b,a) where they show SNN can work with very low

timestep 1 ∼ 2.

Note that the approaches to memory reduction proposed

by other works, such as those reducing simulation time step

Chowdhury et al. (2021b) and reducing SNN time dependence

Meng et al. (2023), can be combined with our layer/channel-wise

sharing technique. This would lead to an even more significant

decrease in memory usage, demonstrating the compatibility and

potential of our method when integrated with other optimization

strategies.

TABLE 4 Ablation on the reset methods.

Dataset Methods Reset scheme Acc (%)

CIFAR10

EfficientLIF-Net [L] Soft 91.99

EfficientLIF-Net [L] Hard 91.66

EfficientLIF-Net [C#2] Soft 91.92

EfficientLIF-Net [C#2] Hard 91.67

EfficientLIF-Net [L+C#2] Soft 91.73

EfficientLIF-Net [L+C#2] Hard 91.65

CIFAR100

EfficientLIF-Net [L] Soft 70.14

EfficientLIF-Net [L] Hard 70.05

EfficientLIF-Net [C#2] Soft 70.01

EfficientLIF-Net [C#2] Hard 68.93

EfficientLIF-Net [L+C#2] Soft 69.99

EfficientLIF-Net [L+C#2] Hard 69.74

N-Caltech

EfficientLIF-Net [L] Soft 65.82

EfficientLIF-Net [L] Hard 64.44

EfficientLIF-Net [C#2] Soft 66.01

EfficientLIF-Net [C#2] Hard 64.98

EfficientLIF-Net [L+C#2] Soft 65.45

EfficientLIF-Net [L+C#2] Hard 64.12

5.3. Experimental analysis

5.3.1. Analysis on training dynamics
In our method section, we showed that the backward

gradients of each method are different. To further analyze

this, we investigate whether the trained weight parameters

can be compatible with other architectures. We expect that

the transferred weights to different architectures may show

performance degradation since each architecture has different

training dynamics (e.g.gradient path). To this end, we train

standard ResNet19-SNN (i.e.baseline), EfficientLIF-Net [L],

EfficientLIF-Net [C#2], and EfficientLIF-Net [L+C#2], In

Figure 6, we report the accuracy of various weights-architecture

configurations on CIFAR10 and TinyImageNet. We observe the

following points: (1) As we expected, transferring weights to

a different architecture brings performance degradation. This

supports our statement that each architecture has different training

dynamics. (2) Especially, baseline shows a huge performance drop

as compared to other architectures. Thus, EfficientLIF-Net needs

to be trained from scratch with gradient-based training. (3) The

trained weights from EfficientLIF-Net [L+C#2] show reasonable

performance on EfficientLIF-Net [L] and EfficientLIF-Net [C] as

it contains the feature from both cross-layer and cross-channel

sharing.

5.3.2. Ablation studies on #group
In the cross-layer sharing scheme, we can further reduce LIF

memory cost by increasing #group. Table 2 shows the accuracy and

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

FIGURE 7

(A) Spike rate analysis on four public datasets. (B) Comparison of the memory breakdown between the baseline SNN and the E�cientLIF-Net in both

forward and backward. We use ResNet19 architecture on ImageNet-100.

LIFmemory cost with respect to #group. Interestingly, EfficientLIF-

Net with high #group almost maintains the performance while

minimizing the LIF memory cost significantly. For example, on

the ImageNet-100 dataset, EfficientLIF-Net [C#8] incurs only

0.8% accuracy drop with 75% higher memory saving. Thus,

one can further reduce LIF memory cost by increasing #group

based on the hardware requirements. We hypothesize that the

observed decrease in performance could be attributed to the

mixing of information across channels during sharing. It is a

widely recognized phenomenon in the field of neural networks that

the preservation of discriminative representation across channels

is crucial for optimal performance. However, when we share

membrane potential across channels, subsequent groups may

be influenced by information from prior groups due to the

sequential nature of this sharing process. While we have suggested

a potential cause, we aim to delve deeper into this issue in our

future research.

5.3.3. Combining with group convolution
To further enhance the efficiency in cross-channel sharing, we

explore the feasibility of combining a group convolution layer with

cross-layer sharing. Since group convolution splits input channels

and output channels into multiple groups, they can be applied to

each channel spike (O
t,(i)
l

in Eq. 10). In Table 3, we observe the

accuracy does not show a huge drop with two convolution groups.

However, as the number of groups increases, the performance goes

down drastically due to lesser number of parameters available for

training convergence.

5.3.4. Soft reset vs. hard reset
We also conduct experiments on the reset scheme in our

EfficientLIF-Net. The membrane potential can be reset to zero

TABLE 5 Analysis on the computational time.

Method (latency: ms) 32 × 32 224 × 224

Baseline 105.12 148.21

EfficientLIF-Net [L] 79.21 131.25

EfficientLIF-Net [C#2] 80.62 142.75

EfficientLIF-Net [L+C#2] 81.26 143.05

(i.e.hard reset), or decreased by the threshold value (i.e.soft reset).

In Table 4, we compare the accuracy of both reset schemes

on ResNet19 architecture, where we observe the hard reset

achieves similar accuracy as the soft reset. However, using the

hard reset does not allow reverse computation of the previous

layer’s or timestep’s membrane potential (Eq. 18 and 19) during

backpropagation. This is because the hard reset removes the

residual membrane potential which can be used in the reverse

computation. Therefore, our EfficientLIF-Net is based on the soft

reset such that we get memory savings both during forward

and backward.

5.3.5. Analysis on spike rate
In Figure 7A, we compare the spike rate across all different

LIF sharing schemes in ResNet19. We conduct experiments on

four datasets. Note, a high spike rate implies the networks require

larger computational cost. The experimental results show that all

LIF sharing schemes have a similar spike rate as the baseline.

This demonstrates that EfficientLIF-Net does not bring further

computational overhead while saving memory cost by sharing the

membrane potential.

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

FIGURE 8

Experiments on ResNet19 E�cientLIF-Net with weight pruning methods on CIFAR10. Left: Most LIF neurons generate output spikes although the

weight sparsity increases. Therefore, the LIF memory cost cannot be reduced by weight pruning. Right: Accuracy and LIF memory cost comparison

across baseline and E�cientLIF-Net. The weight memory cost across all models is ∼5MB indicated with a gray dotted line.

FIGURE 9

Top: The breakdown of computation for the Baseline SNN,

E�cientLIF-Net[C#2], and E�cientLIF-Net[C#4] in a 128 PE array

implemented on SATA . Bottom: Comparison of DRAM access

reduction between the Baseline SNN and E�cientLIF-Net[Layer] on

VGG-16 across various datasets. The reduction is contrasted for

single batch processing and multiple mini-batch processing

scenarios.

5.3.6. Time overhead analysis
We measured the time overhead on a V100 GPU with a batch

size of 128. We used VGG16 with CIFAR10 and ImageNet-100

datasets with image sizes of 32 × 32 and 224 × 224, respectively.

Table 5 shows the latency results for each method. Interestingly,

we found that our method improves computation time, implying

that our LIF layer-sharing method reduces the time required to

access DRAM, which originally takes a significant percentage of

computational time. As a result, our method can be implemented

without a huge computational burden.

5.3.7. Memory cost breakdown
In Figure 7B, we compare thememory cost breakdown between

the SNN baseline and EfficientLIF-Net in both forward and

backward. In the memory cost comparison, we consider memory

for weight parameters (32-bit), spike activation (1-bit), and LIF

neurons (32-bit). In the baseline SNN, LIF neurons take a dominant

portion for both forward and backward memory cost. Especially,

for backward, LIF neurons occupy around 7× larger memory than

weights or activation memory. Our EfficientLIF-Net significantly

reduces the LIF memory cost, resulting in less memory overhead

compared to weight parameters (in both forward and backward)

and activation (in backward only).

5.3.8. E�cientLIF-Net with weight pruning
As pruning for SNNs is popular due to its usage on edge devices

(Neftci et al., 2016; Shi et al., 2019; Guo et al., 2020; Chen et al.,

2021; Kim et al., 2022b), it is important to figure out whether the

advantage from EfficientLIF-Net remains in sparse SNNs.

Before exploring the effectiveness of the LIF sharing method in

sparse SNNs, we first investigate if LIF neurons still require a huge

memory in sparse SNNs. This is because a number of LIF neurons

might not generate output spikes in the high weight sparsity regime

(≥90%), then, the memory cost for such dead neurons can be

reduced. To this end, we prune the SNN model to varied sparsity

using magnitude-based pruning (Han et al., 2015). Interestingly, as

shown in Figure 8 Left, only ∼3% neurons do not generate spikes

(i.e.dead neuron) across all sparsity levels. This implies that the

LIF memory cost is still problematic in sparse SNNs. Based on the

observation, we prune EfficientLIF-Net and compare the memory

cost and accuracy with the standard SNN baseline. Here, we prune

all architectures to have 94.94% weight sparsity. In Figure 8 Right,

the baseline architecture requires 2.9 MB for LIF neurons, which

is equivalent to ∼60% of the memory cost for weight parameters.

With cross-layer (denoted as L in Figure 8) and cross-channel

sharing (denoted as C#2 in Figure 8), we can reduce the LIF

memory cost by about half compared to the baseline. Cross-layer

& channel sharing (denoted as L+C#2 in Figure 8) further reduces

the memory cost, which takes only ∼23% memory compared to

the baseline. Overall, the results demonstrate that LIF memory

reduction is not only important for high-resolution images but

also for relatively low-resolution images such as CIFAR10 especially

when considering pruned SNNs.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

5.3.9. Hardware evaluation
As discussed in Section 4.4, both cross-channel and cross-

layer sharing can significantly enhance hardware efficiency during

deployment. From the top portion of Figure 9, it is evident

that cross-channel sharing in EfficientLIF-Net can considerably

decrease the number of required LIF units. Specifically, our

approach reduces the compute requirement of LIF units inside the

PE from 61.6 to 28.6% of the total PE computation when employing

C#4 cross-channel sharing.

The bottom part of Figure 9 indicates that cross-layer sharing

can effectively minimize the number of DRAM accesses, which

is the most energy-consuming operation during on-chip SNN

inference. For single-batch scenarios, the reduction is not

significant, since weight data movement dominates the DRAM

accesses, as outlined in (Yin et al., 2022). However, when employing

mini-batches, the reduction becomes more substantial. We note a

23 and 25% reduction in total DRAM accesses on CIFAR10 and

TinyImageNet, respectively, for 64 mini-batches. This reduction

trend continues to rise with larger mini-batch numbers.

5.4. Evaluation on human activity
recognition datasets

To further validate our method on datasets that rely heavily

on temporal information, we conduct experiments using Human

Activity Recognition (HAR) datasets obtained from wearable

devices. Descriptions of these datasets are provided below:

• UCI-HAR (Anguita et al., 2013) consists of 10.3 k instances

collected from 30 subjects, involving six different activities:

walking, walking upstairs, walking downstairs, sitting,

standing, and lying. The dataset employs sensors such as a

3-axis accelerometer and a 3-axis gyroscope (both at 50Hz)

from a Samsung Galaxy SII.

• HHAR (Stisen et al., 2015) is collected from nine subjects and

encompasses six daily activities: biking, sitting, standing,

walking, stair ascent, and stair descent. The dataset

utilizes accelerometers from eight smartphones and four

smartwatches (with sampling rates ranging from 50 to 200

Hz).

Following previous work, we split both datasets into 64% for

the training set, 16% for the validation set, and 20% for the test set.

We report test accuracy when the model achieves its best validation

accuracy.

In Table 6, we compare our method with the baseline

model, which consists of six 1D-convolutional layers, i.e.,

Conv1D(InputChannel, 128) − 4 × Conv1D(128, 128) −

Conv1D(128, #Class). In addition, we provide the performance

of other methods (Avilés-Cruz et al., 2019; Mukherjee et al.,

2020; Wang and Liu, 2020) on HHAR and UCI-HAR. Avilés-

Cruz et al. (2019) uses a CNN, Mukherjee et al. (2020) uses a

combination of CNN and LSTM, and Wang and Liu (2020)

uses an LSTM. From the table, we can observe the following

results: (1) The baseline Spiking MLP achieves an accuracy of

97.68% on the HHAR dataset and 96.06% on the UCI-HAR

TABLE 6 Accuracy (%) comparison between baseline (i.e., 6 layer

1D-Convolutional SNN) and our E�cientLIF-Net.

Method/dataset HHAR
(Stisen et al.,

2015)

UCI-HAR
(Anguita

et al., 2013)

Avilés-Cruz et al. (2019) 96.19 96.29

Mukherjee et al. (2020) 97.15 97.87

Wang and Liu (2020) 95.59 82.41

Spiking MLP (Baseline) 97.68 96.06

EfficientLIF-Net [L] 97.10 95.58

EfficientLIF-Net [C#2] 97.68 96.06

EfficientLIF-Net [L+C#2] 97.10 95.04

Here, EfficientLIF-Net[L], EfficientLIF-Net[C#2], EfficientLIF-Net[L+C#2] denote

EfficientLIF with cross-layer, cross-channel (#group=2), and cross-layer & channel sharing,

respectively.

dataset, which is comparable accuracy with the previous methods.

(2) Comparing the different configurations of EfficientLIF-Net

to the baseline Spiking MLP, we can see that the EfficientLIF-

Net maintains a similar level of accuracy as the baseline on

both datasets. These results suggest that our LIF-sharing

method also works well with tasks that heavily rely on temporal

information. Overall, our empirical results support the observation

that gradients propagate through both temporal and spatial

dimensions, effectively training the weight parameters to account

for temporal information, as demonstrated in Eq. 15, 16,

and 17.

6. Conclusion

In this paper, we highlight and tackle the problem of

LIF memory cost in SNNs. This problem becomes severe as

the image resolution increases. To address this, we propose

EfficientLIF-Net where we share the membrane potential across

layers and channels, which can effectively reduce memory

usage. During backpropagation, our EfficientLIF-Net also

enables reverse computation on the previous layer and channel.

Therefore, we only need to store the membrane potential of

the last layer/channel during forward. In our experiments,

EfficientLIF-Net achieves similar performance and computational

cost while significantly reducing memory cost compared to

standard SNN baseline. We also found that the LIF memory

problem exists in sparse-weight SNNs where even a small

resolution dataset causes LIF memory overhead. The memory

benefit of EfficientLIF-Net is shown in pruned SNNs, which

implies our method is complementary to previous compression

methods.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

Author contributions

YK and PP conceived the work. YK, YL, AM, and RY carried

out experiments. YK, RY, and PP contributed to the writing of

the paper. All authors contributed to the article and approved the

submitted version.

Funding

This work was supported in part by CoCoSys, a JUMP2.0

center sponsored by DARPA and SRC, Google Research Scholar

Award, the National Science Foundation CAREER Award, TII

(Abu Dhabi), the DARPA AI Exploration (AIE) program, and the

DoE MMICC center SEA-CROGS (Award #DE-SC0023198).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al.
(2015). Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Transac. Comput. Aided Des. Integr. Circ. Syst. 34, 1537–1557.
doi: 10.1109/TCAD.2015.2474396

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J. L., et al. (2013). “A public
domain dataset for human activity recognition using smartphones,” in Esann 3.

Avilés-Cruz, C., Ferreyra-Ramírez, A., Zúñiga-López, A., and Villegas-Cortéz,
J. (2019). Coarse-fine convolutional deep-learning strategy for human activity
recognition. Sensors 19, 1556. doi: 10.3390/s19071556

Che, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022).
“Differentiable hierarchical and surrogate gradient search for spiking neural networks,”
in Advances in Neural Information Processing Systems 24975–24990.

Chen, Y., Yu, Z., Fang, W., Huang, T., and Tian, Y. (2021). Pruning of deep spiking
neural networks through gradient rewiring. arXiv preprint arXiv:2105.04916.

Chowdhury, S. S., Garg, I., and Roy, K. (2021a). Spatio-temporal
pruning and quantization for low-latency spiking neural networks,” in 2021
International Joint Conference on Neural Networks (IJCNN) (IEEE) 1–9.
doi: 10.1109/IJCNN52387.2021.9534111

Chowdhury, S. S., Rathi, N., and Roy, K. (2021b). One timestep is all you
need: Training spiking neural networks with ultra low latency. arXiv preprint
arXiv:2110.05929.

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M.,
Redaelli, A., et al. (2022). 2022 roadmap on neuromorphic computing and engineering.
Neuromor. Comput. Eng. 2, 022501. doi: 10.1088/2634-4386/ac4a83

Datta, G., Liu, Z., and Beerel, P. A. (2022). Hoyer regularizer is all you need for ultra
low-latency spiking neural networks. arXiv preprint arXiv:2212.10170.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE) 248–255. doi: 10.1109/CVPR.2009.5206848

Deng, L., Wu, Y., Hu, Y., Liang, L., Li, G., Hu, X., et al. (2021). “Comprehensive
snn compression using admm optimization and activity regularization,” in IEEE
Transactions on Neural Networks and Learning Systems.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE)
1–8. doi: 10.1109/IJCNN.2015.7280696

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a). Deep
residual learning in spiking neural networks. arXiv preprint arXiv:2102.04159.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021b).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision 2661–2671. doi: 10.1109/ICCV48922.2021.00266

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Guo, W., Fouda, M. E., Yantir, H. E., Eltawil, A. M., and Salama, K. N. (2020).
Unsupervised adaptive weight pruning for energy-efficient neuromorphic systems.
Front. Neurosci. 14, 598876. doi: 10.3389/fnins.2020.598876

Guo, Y., Chen, Y., Zhang, L., Liu, X., Wang, Y., Huang, X., et al. (2022a). “Im-loss:
information maximization loss for spiking neural networks,” in Advances in Neural
Information Processing Systems 156–166.

Guo, Y., Chen, Y., Zhang, L., Wang, Y., Liu, X., Tong, X., et al. (2022b). “Reducing
information loss for spiking neural networks,” in Computer Vision-ECCV 2022:
17th European Conference, Tel Aviv, Israel, Proceedings, Part XI (Springer) 36–52.
doi: 10.1007/978-3-031-20083-0_3

Han, B., Srinivasan, G., and Roy, K. (2020). “Rmp-snn: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking neural
network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition 13558–13567. doi: 10.1109/CVPR42600.2020.01357

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and
connections for efficient neural network,” inAdvances in Neural Information Processing
Systems 28.

Hao, Z., Bu, T., Ding, J., Huang, T., and Yu, Z. (2023). Reducing ann-snn conversion
error through residual membrane potential. arXiv preprint arXiv:2302.02091.
doi: 10.1609/aaai.v37i1.25071

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in CVPR 770–778. doi: 10.1109/CVPR.2016.90

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022a). Neural architecture
search for spiking neural networks. arXiv preprint arXiv:2201.10355.

Kim, Y., Li, Y., Park, H., Venkatesha, Y., Yin, R., and Panda, P. (2022b).
“Exploring lottery ticket hypothesis in spiking neural networks,” in Computer
Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, Proceedings, Part
XII (Cham: Springer Nature Switzerland) 102–120. doi: 10.1007/978-3-031-19
775-8_7

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from tiny
images.

Kundu, S., Pedram,M., and Beerel, P. A. (2021). “Hire-snn: Harnessing the inherent
robustness of energy-efficient deep spiking neural networks by training with crafted
input noise,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision 5209–5218. doi: 10.1109/ICCV48922.2021.00516

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling spike-
based backpropagation for training deep neural network architectures. Front. Neurosci.
14, 119. doi: 10.3389/fnins.2020.00119

Lee, J.-J., Zhang, W., and Li, P. (2022). “Parallel time batching: Systolic-array
acceleration of sparse spiking neural computation,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA) (IEEE) 317–330.
doi: 10.1109/HPCA53966.2022.00031

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508.
doi: 10.3389/fnins.2016.00508

Li, C., Ma, L., and Furber, S. B. (2022a). Quantization framework for fast
spiking neural networks. Front. Neurosci. 16, 918793. doi: 10.3389/fnins.2022.
918793

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3390/s19071556
https://doi.org/10.1109/IJCNN52387.2021.9534111
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2020.598876
https://doi.org/10.1007/978-3-031-20083-0_3
https://doi.org/10.1109/CVPR42600.2020.01357
https://doi.org/10.1609/aaai.v37i1.25071
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-031-19775-8_7
https://doi.org/10.1109/ICCV48922.2021.00516
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1109/HPCA53966.2022.00031
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2022.918793
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2023.1230002

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021a). A free lunch from
ann: Towards efficient, accurate spiking neural networks calibration. arXiv preprint
arXiv:2106.06984.

Li, Y., Geller, T., Kim, Y., and Panda, P. (2023a). Seenn: Towards temporal spiking
early-exit neural networks. arXiv preprint arXiv:2304.01230.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021b). “Differentiable
spike: Rethinking gradient-descent for training spiking neural networks,” in Advances
in Neural Information Processing Systems 23426–23439.

Li, Y., Kim, Y., Park, H., Geller, T., and Panda, P. (2022b). Neuromorphic data
augmentation for training spiking neural networks. arXiv preprint arXiv:2203.06145.

Li, Y., Kim, Y., Park, H., and Panda, P. (2023b). Uncovering the representation
of spiking neural networks trained with surrogate gradient. arXiv preprint
arXiv:2304.13098.

Li, Y., and Zeng, Y. (2022). Efficient and accurate conversion of
spiking neural network with burst spikes. arXiv preprint arXiv:2204.13271.
doi: 10.24963/ijcai.2022/345

Liang, L., Qu, Z., Chen, Z., Tu, F., Wu, Y., Deng, L., et al. (2021). H2learn:
High-efficiency learning accelerator for high-accuracy spiking neural networks. arXiv
preprint arXiv:2107.11746.

Liu, Y.-H., and Wang, X.-J. (2001). Spike-frequency adaptation of a
generalized leaky integrate-and-fire model neuron. J. Comput. Neurosci. 10, 25–45.
doi: 10.1023/A:1008916026143

Loshchilov, I., and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983.

Lui, H. W., and Neftci, E. (2021). “Hessian aware quantization of spiking
neural networks,” in International Conference on Neuromorphic Systems 1–5.
doi: 10.1145/3477145.3477158

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-Q. (2022). “Training
high-performance low-latency spiking neural networks by differentiation on spike
representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition 12444–12453. doi: 10.1109/CVPR52688.2022.01212

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-Q. (2023). Towards
memory-and time-efficient backpropagation for training spiking neural networks.
arXiv preprint arXiv:2302.14311.

Mukherjee, D., Mondal, R., Singh, P. K., Sarkar, R., and Bhattacharjee, D.
(2020). Ensemconvnet: a deep learning approach for human activity recognition
using smartphone sensors for healthcare applications. Multim. Tools Applic. 79,
31663–31690. doi: 10.1007/s11042-020-09537-7

Narayanan, S., Taht, K., Balasubramonian, R., Giacomin, E., and Gaillardon, P.-E.
(2020). “Spinalflow: An architecture and dataflow tailored for spiking neural networks,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA) (IEEE) 349–362. doi: 10.1109/ISCA45697.2020.00038

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks. IEEE Signal Proc. Mag. 36, 61–63.
doi: 10.1109/MSP.2019.2931595

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.
(2016). Stochastic synapses enable efficient brain-inspired learning machines. Front.
Neurosci. 10, 241. doi: 10.3389/fnins.2016.00241

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B.,
Sommer, F. T., et al. (2021). “Efficient neuromorphic signal processing with loihi
2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS) (IEEE) 254–259.
doi: 10.1109/SiPS52927.2021.00053

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9,
437. doi: 10.3389/fnins.2015.00437

Rathi, N., Panda, P., and Roy, K. (2018). Stdp-based pruning of connections
and weight quantization in spiking neural networks for energy-efficient
recognition. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 38, 668–677.
doi: 10.1109/TCAD.2018.2819366

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Schaefer, C. J., and Joshi, S. (2020). “Quantizing spiking neural networks
with integers,” in International Conference on Neuromorphic Systems 1–8.
doi: 10.1145/3407197.3407203

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shi, Y., Nguyen, L., Oh, S., Liu, X., and Kuzum, D. (2019). A soft-pruning
method applied during training of spiking neural networks for in-memory computing
applications. Front. Neurosci. 13, 405. doi: 10.3389/fnins.2019.00405

Shrestha, S. B., and Orchard, G. (2018). Slayer: Spike layer error reassignment in
time. arXiv preprint arXiv:1810.08646.

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for
large-scale image recognition,” in ICLR.

Singh, S., Sarma, A., Lu, S., Sengupta, A., Kandemir, M. T., Neftci, E., et al. (2022).
“Skipper: Enabling efficient snn training through activation-checkpointing and time-
skipping,” in 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO) (IEEE) 565–581. doi: 10.1109/MICRO56248.2022.00047

Skatchkovsky, N., Jang, H., and Simeone, O. (2020). “Federated neuromorphic
learning of spiking neural networks for low-power edge intelligence,” in ICASSP
2020–2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (IEEE) 8524–8528. doi: 10.1109/ICASSP40776.2020.905
3861

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard, M. B., Dey,
A., et al. (2015). “Smart devices are different: Assessing and mitigatingmobile
sensing heterogeneities for activity recognition,” in Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems 127–140. doi: 10.1145/2809695.280
9718

Venkatesha, Y., Kim, Y., Tassiulas, L., and Panda, P. (2021). Federated learning with
spiking neural networks. arXiv preprint arXiv:2106.06579.

Wang, L., and Liu, R. (2020). Human activity recognition based on wearable
sensor using hierarchical deep lstm networks. Circ. Syst. Signal Proc. 39, 837–856.
doi: 10.1007/s00034-019-01116-y

Wu, H., Zhang, Y., Weng, W., Zhang, Y., Xiong, Z., Zha, Z.-J., et al.
(2021). “Training spiking neural networks with accumulated spiking flow,”
in Proceedings of the AAAI Conference on Artificial Intelligence 10320–10328.
doi: 10.1609/aaai.v35i12.17236

Wu, J., Xu, C., Zhou, D., Li, H., and Tan, K. C. (2020). Progressive tandem
learning for pattern recognition with deep spiking neural networks. arXiv preprint
arXiv:2007.01204.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence 1311–1318. doi: 10.1609/aaai.v33i01.33011311

Yang, H., Lam, K.-Y., Xiao, L., Xiong, Z., Hu, H., Niyato, D., et al. (2022). Lead
federated neuromorphic learning for wireless edge artificial intelligence.Nat. Commun.
13, 1–12. doi: 10.1038/s41467-022-32020-w

Yin, R., Moitra, A., Bhattacharjee, A., Kim, Y., and Panda, P. (2022). Sata:
Sparsity-aware training accelerator for spiking neural networks. arXiv preprint
arXiv:2204.05422.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2020). Going deeper with
directly-trained larger spiking neural networks. arXiv preprint arXiv:2011.05280.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1230002
https://doi.org/10.24963/ijcai.2022/345
https://doi.org/10.1023/A:1008916026143
https://doi.org/10.1145/3477145.3477158
https://doi.org/10.1109/CVPR52688.2022.01212
https://doi.org/10.1007/s11042-020-09537-7
https://doi.org/10.1109/ISCA45697.2020.00038
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1145/3407197.3407203
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.1109/MICRO56248.2022.00047
https://doi.org/10.1109/ICASSP40776.2020.9053861
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1007/s00034-019-01116-y
https://doi.org/10.1609/aaai.v35i12.17236
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1038/s41467-022-32020-w
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
	1. Introduction
	2. Related work
	2.1. Spiking neural networks
	2.2. Compression methods for efficient SNNs

	3. Preliminaries
	3.1. Leaky integrate-and-fire neuron
	3.2. Gradient backpropagation in SNNs

	4. Methodology: EfficientLIF-Net
	4.1. Sharing memory of LIF neurons
	4.1.1. Cross-layer sharing
	4.1.2. Cross-channel sharing
	4.1.3. Cross-layer & channel sharing

	4.2. Gradient analysis
	4.2.1. Gradient of cross-layer sharing
	4.2.2. Gradient of cross-channel sharing

	4.3. Memory-efficient backpropagation
	4.3.1. Backpropagation in cross-layer sharing
	4.3.2. Backpropagation in cross-channel sharing

	4.4. Hardware discussion
	4.4.1. Cross-layer Sharing
	4.4.2. Cross-channel Sharing


	5. Experiments
	5.1. Implementation details
	5.2. Performance comparison
	5.3. Experimental analysis
	5.3.1. Analysis on training dynamics
	5.3.2. Ablation studies on #group
	5.3.3. Combining with group convolution
	5.3.4. Soft reset vs. hard reset
	5.3.5. Analysis on spike rate
	5.3.6. Time overhead analysis
	5.3.7. Memory cost breakdown
	5.3.8. EfficientLIF-Net with weight pruning
	5.3.9. Hardware evaluation

	5.4. Evaluation on human activity recognition datasets

	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


