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Abstract—Spiking Neural Networks (SNNs) have gained huge
attention as a potential energy-efficient alternative to conven-
tional Artificial Neural Networks (ANNs) due to their inherent
high-sparsity activation. Recently, SNNs with backpropagation
through time (BPTT) have achieved a higher accuracy result
on image recognition tasks than other SNN training algorithms.
Despite the success from the algorithm perspective, prior works
neglect the evaluation of the hardware energy overheads of
BPTT, due to the lack of a hardware evaluation platform for
this SNN training algorithm. Moreover, although SNNs have
long been seen as an energy-efficient counterpart of ANNs,
a quantitative comparison between the training cost of SNNs
and ANNs is missing. To address the aforementioned issues,
in this work, we introduce SATA (Sparsity-Aware Training
Accelerator), a BPTT-based training accelerator for SNNs. The
proposed SATA provides a simple and re-configurable systolic-
based accelerator architecture, which makes it easy to analyze
the training energy for BPTT-based SNN training algorithms.
By utilizing the sparsity, SATA increases its computation energy
efficiency by 5.58× compared to the one without using sparsity.
Based on SATA, we show quantitative analyses of the energy
efficiency of SNN training and make a comparison between
the training cost of SNNs and ANNs. The results show that,
on Eyeriss-like systolic-based architecture, SNNs consume 1.27×
more total energy with considering sparsity (spikes, gradient
of firing function, and gradient of membrane potential) when
compared to ANNs. We find that such high training energy cost is
from time-repetitive convolution operations and data movements
during backpropagation. Moreover, to guide the future SNN
training algorithm design, we provide several observations on
energy efficiency with respect to different SNN-specific training
parameters.

Index Terms—Neuromorphic computing, Spiking neural net-
works, Computer architecture, Energy-efficiency analysis, Arti-
ficial neural networks.

I. INTRODUCTION

RECENT advances in deep learning have made artificial
neural networks (ANNs) better candidates than humans

for many tasks involving the processing of images, videos, and
natural language [1]. Besides ANNs, Spiking neural networks
(SNN), inspired by the processing paradigm of the human
brain, are gaining popularity [2]–[4]. SNNs primarily bring
benefits to deep learning applications from two aspects: (1) the
capture of both temporal and spatial information, whereas most
ANNs lack the information from the time domain due to their
spatial feedforward characteristics, (2) the energy-efficient
implementations on hardware, since SNNs do not require
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multipliers for Multiply and Accumulate (MAC) operations
during inference time. The inherent single-bit resolution of
spikes also reduces the cost of memory communication.

Recently, there has been a growing interest in the field of
SNN training algorithms. Works such as [5], [6] have shown
that Back Propagation Through Time (BPTT) [7] can achieve
higher accuracy performance than Spike Time Dependent Plas-
ticity (STDP) [8], [9] and faster convergence than ANN-SNN
conversion methods [2], [10]–[12]. Despite the success from
the algorithm perspective, these works neglect the evaluation
of the hardware energy overheads of BPTT and thus fail to
build the connection between the algorithm superiority and
hardware efficiency in SNN training.

However, evaluating the hardware efficiency of SNN algo-
rithms is not a direct task for algorithm researchers. Prior
SNN algorithm works [10] use analytical methods to evaluate
the hardware energy overheads of BPTT that neglect the
underlying hardware architectural details leading to inaccu-
rate estimations. In fact, a hardware evaluation platform for
BPTT-based SNN training is missing in the SNN research
community. Moreover, despite the fact that SNNs have been
long treated as an energy-efficient counterpart of ANNs, there
are very limited prior works comparing the energy difference
between the two types of networks.

In [13], a rate encoding-based inference accelerator has been
proposed and the inference energy for SNNs has been pro-
vided. However, the focus of the work is to optimize the NoCs
for mapping SNNs onto the chip and has not given an energy
comparison between SNNs and ANNs. In the prior work [14],
another inference accelerator for SNN has been proposed,
however, the accelerator is based on temporal encoding which
is different from the rate encoding that BPTT relies on. The
work also provides the inference energy difference between
SNNs and ANNs, however, a training energy comparison
between two types of neural networks is still missing in the
community. Recently, the work [15] has proposed a custom-
tailored hardware architecture for SNN training that is highly
SNN-tailored and targets performance boosting. For example,
it utilizes LUT-based convolutions and has complex engines to
compress the memory. With the complex and tailored design,
it becomes difficult for researchers to make energy analyses of
the different SNN training topologies on it. A fair comparison
of the training energy cost between SNNs and ANNs is also
hard to make on SNN-crafted architecture design. Hence, the
work is unsuitable for general-purpose hardware evaluation
of BPTT training. Moreover, they merely consider spike and
spike gradient level sparsity that insufficiently captures the
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TABLE I
COMPARISON BETWEEN SATA AND OTHER SNN ACCELERATORS WORK.
S DENOTES THE SPIKE ACTIVATION, ∇f DENOTES THE GRADIENT OF
FIRING FUNCTION AND ∇U DENOTES THE GRADIENT OF MEMBRANE

POTENTIAL.

Accelerator Type Sparsity Arch-design
Spinalflow [14] Inference S Systolic array-based
Shenjing [13] Inference S SNN-crafted
H2Learn [15] Training ∇f SNN-crafted
SATA Training S, ∇f , ∇U Systolic array-based

repercussions of BPTT on hardware.
Motivated by the aforementioned problem, we propose

SATA (Sparsity-Aware Training Accelerator), an Eyeriss-
inspired [16] general-purpose training accelerator for BPTT-
based SNNs. The focus of SATA is to simulate a simple and re-
configurable accelerator design, which simplifies the analysis
of the training energy for BPTT-based training algorithms.
Compared to prior works, SATA has several differences.
Firstly, unlike prior works [15], the SNN training architecture
is more general and not overly optimized to a particular SNN
architecture. This enables scalable hardware evaluation across
a wide range of SNN models. Secondly, we show that sparsity
in the gradients of membrane potential (∇U ) can be leveraged
to further improve the energy efficiency of SNN training.
Moreover, Our general-purpose implementation approach ad-
ditionally enables us to perform a fair comparison between
ANN and SNN training. Finally, our training accelerator can
be used as a benchmarking tool to evaluate the hardware
training cost of SNNs. Table I summarizes our contributions
with respect to prior digital SNN accelerator works that are
most related to our works [13]–[15].

Another key point to optimize the energy efficiency of SNNs
is to use the energy as a metric directly in training algorithm
design. But today, a platform that can make a sparsity-aware
estimation of the energy cost for SNN training is missing. We,
therefore, propose a framework to estimate the computation
and data movement energy in SNN training based on the
architecture of SATA. The framework extends the energy
estimation method proposed in [17] to further consider the
impact of various groups of sparsity (S, ∇f , and ∇U ) and
SNN-specific training parameters, for example, the number of
timesteps.

We summarize our contributions as follows:
1) We present SATA, a sparsity-aware BPTT-based train-

ing accelerator for SNNs. The simple and highly re-
configurable design makes it easy to perform a training
energy analysis on SATA. The systolic array-based ar-
chitecture also makes SATA the right baseline to make
energy cost comparisons between SNN and ANN train-
ing. SATA also comprehensively captures three groups
of sparsity (spike S, the gradient of firing function
∇f , and the gradient of membrane potential ∇U ) to
optimize the training energy efficiency. By utilizing
those sparsities, SATA increases its computation energy
efficiency by 5.58× compared to the one without using
sparsity. Along with SATA, we also propose an energy
estimation framework for SNN training based on SATA,

which is publicly available [18].
2) We provide a training energy cost comparison between

SNNs on SATA and ANNs on our baseline modified
from the 8-bit version of Eyeriss [16]. Our result shows
that, on Eyriss-like systolic-based architecture, without
considering sparsity for both SNNs and ANNs, SNNs
consume 1.35× more energy in total training energy
compared to ANNs. Specifically, non-sparse SNNs con-
sume 3.28× more energy on computation and 1.28×
more energy on memory access compared to non-sparse
ANNs. By further considering the sparsity (S, ∇f , ∇U ),
SNNs now consume 1.27× more total training energy
compared to ANNs. Specifically, sparse SNNs consume
1.19× more energy on computation and 1.27× more
energy on memory access compared to sparse ANNs.

3) We also showcase various ablation studies on how the
three groups of sparsity (S, ∇f , ∇U ) change with
different SNN training settings (for example, datasets,
timestep, and network depth) and the training energy
of SNNs resulting from the change of sparsity. We
show that the total SNN training energy exponentially
increases in a large timestep regime (T > 32). We
also show that by having more sparsity in ∇U , we can
finally achieve less computation energy for SNN training
compared to ANNs.

II. RELATED WORK

There has been a wide range of works that have proposed
accelerator designs to carry out SNN inference showing a high
degree of parallelism, throughput, and energy-efficiency [19]–
[23]. These include accelerators with a fully-digital architec-
ture, such as IBM’s TrueNorth processor [19], as well as ones
in which synaptic computational cores comprise of analog
memristive crossbars, such as Resparc [21]. While most of the
works focus on inference-only accelerator designs, some like
Intel’s Loihi processor account for SNN training using STDP
learning rule [2], [24]. Furthermore, the TrueNorth and Loihi
processors are highly optimized to facilitate asynchronous
spike communications with the objective of improving the
performance of the deployed SNNs having a specific type of
architecture, different from the conventional ones. However,
they lack general applicability since they do not have support
to benchmark a wide variety of SNNs, particularly SNNs
trained by standard BPTT learning rules. Thus, it is imperative
to have a general-purpose SNN training accelerator framework
that can support the training and inference of a plethora of
SNN architectures that is emerging from recent SNN algorithm
studies.

There is also a huge volume of work centered around SNNs
that claim SNNs to be an energy-efficient alternative to ANNs
due to high sparsity in input spikes [2], [10], [20], [21],
[25]. But recently, an inference framework implemented in an
Eyeriss-like systolic-array hardware tailored for SNNs called
SpinalFlow [14] has shown that standard rate-coded SNNs
with modest spike-rates exhibit significantly lower efficiency
than corresponding accelerators for ANNs. Note, Eyeriss [16]
follows a von-Neumann mode of neural computation widely
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Fig. 1. An illustrative example of SNN. All intermediate neurons output rate-
coded spikes and leak potential at each timestep t. Output neurons at the last
fully connected layer will not generate spikes and only accumulate potential
without leaking.

adopted in modern accelerators and enables us to optimize
over different design choices such as type of dataflow, com-
putation reuse, and skipping zero computations. The primary
cause behind the inefficiency of SNNs can be attributed
to the storage and movement of membrane potentials over
multiple timesteps during inference. With this in mind, the
next steps include developing a similar hardware evaluation
framework that can yield a realistic estimation of hardware
energy and latency associated with training a wide range of
SNN architectures over multiple timesteps.

To this end, our SATA framework is the first to show that
the inherent sparsity in SNNs associated with the spikes and
their gradients are alone insufficient to yield training energy
efficiency with respect to baseline ANN models. SNN training
for conventional architectures, in fact, incurs huge overheads
in terms of memory accesses and computations compared to
ANNs, thereby making them highly energy-inefficient. Based
on the conclusion and discussion posed in this work through
the extensive study conducted on SATA and the energy-
analysis tool that we propose, we hope that the future SNN
algorithm research can be directed towards enhancing specific
forms of sparsity (that impact computation cost largely) and
avoiding certain values of SNN-specific training parameters
(that impact memory cost largely) during training that can
enable SNNs to be energy-efficient.

III. BACKGROUND

A. SNN Basics

The network architectures for SNNs are very similar to that
of ANNs, except that all ReLU-based neurons are replaced by
simple neuron models to emulate biological neuron behaviors.
This includes the update of membrane potential and the firing
of spikes. Each pixel of input image fed to SNNs is encoded
into a spike train that extends across the total timesteps
T . Poisson distribution-based rate encoding scheme [26] is
primarily used [5], [6], where each pixel fires a spike train with
a frequency proportional to its intensity. Noted that throughout
the text, we refer to a timestep to the minimum time unit
in SNN, in which a neuron updates the membrane potential
according to the input and produces a spike if the threshold is
reached.
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Fig. 2. Illustration of the curve to approximate the derivative of spike firing
function. The derivative equals 1

β
when the membrane potential is inside the

β range around the firing threshold Uth during the forward propagation and
equals zero otherwise. We name β as the firing width.
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Fig. 3. Illustration of how BPTT works. During the forward propagation, the
neuron of layer l at timestep t+1 will retain the potential U l

t and receive the
spike Sl

t from the previous timestep, which is considered as the propagation in
the temporal domain. In the spatial domain, the neuron at layer l+1 receives
the spike Sl from the previous layer. Forward paths are shown in blue arrows.
For the backpropagation, the paths are reversed and shown in red arrows.

One of the most popular neuron models is a Leaky-
Integrate-and-Fire (LIF) model. The LIF neuron receives bi-
nary spike inputs at every timestep t. After receiving the
spikes, synaptic weights corresponding to each input spike
are accumulated in the neuron’s membrane potential U . The
potential leaks at every timestep, based on the leaking factor
α. When the potential reaches the pre-set threshold Uth, the
neuron fires an output spike and resets its membrane potential.
We model LIF using the explicit iterative expression:

U l
t = αU l

t−1(1− Sl
t−1) +W l−1Sl−1

t , (1)

Sl
t = f(U l

t − Uth), (2)

where U l
t and Sl

t represent the potential and spike matrices of
layer l at timestep t. Also, W l−1 is the weight matrix from
previous layer l− 1. And f(·) is the Heaviside step function,
where f(x) = 1 when x > 0, otherwise f(x) = 0. Fig. 1
shows an example SNN for an image classification task.

B. BPTT for SNNs
Recently, backpropagation through time (BPTT) algorithm

[7], [27] has become popular to train SNN models from
scratch. BPTT shrinks the training accuracy gap between
SNNs and ANNs by backpropagating gradients from both
spatial and temporal domains, illustrated by Fig. 3. The spike
gradient ∇S and potential gradient ∇U at layer l and time t
with respect to loss function L are expressed as:

∇Sl
t = ∇U l

t+1(−αU l
t) +∇H l+1

t , (3)

∇U l
t = ∇U l

t+1α(1− Sl
t) +∇Sl

tf
′(U l

t), (4)

where ∇H l+1
t represents the gradients backpropagated from

the layer l + 1 at timestep t, which can be formulated as:

∇H l+1
t = W l+1∇U l+1

t . (5)
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We use the function proposed in [5] to approximate the
derivative of Heaviside step function, where f ′(x) = 1

β when
|x− Uth| < β

2 , otherwise f ′(x) = 0. The approximated
derivative of step function is illustrated in Fig. 2. The weight
update for layer l with learning rate γ follows the rule below:

W l = W l − γ
∑
t

∇U l
tS

l−1
t . (6)

IV. PITFALLS AND OPPORTUNITIES IN BPTT

A. Pitfalls in Memory Access and Computation

Although the BPTT training algorithm boosts accuracy per-
formance for SNNs, it deteriorates the hardware performance
of the learning process by attaching memory consumption
overheads. Since BPTT requires the information of spikes (S)
and membrane potential (U ) for every timestep during the
forward propagation to conduct backpropagation, it introduces
time-steps-related memory storage and communication over-
heads. As we will show in Section VII, the overhead scales
exponentially with larger timesteps.

Besides memory overhead, energy overheads also exist in
the SNN training computations. BPTT requires extra compu-
tations for updating the gradients (∇H) through layers by
carrying out the same multi-bit multiply-accumulate (MAC)
operation as ANNs and repeating it across all timesteps.
The update of learnable parameters W also repeats for each
timestep to accumulate the temporal information. Besides
the gradients of learnable parameters and activation, SNN
also needs ancillary computations for gradients of membrane
potential (∇U ) as shown in Eqn. (4).

B. Opportunities in Sparsity

Fortunately, SNNs naturally exhibit high sparsity. By lever-
aging the sparsity in spikes S, we can reduce ∼ 94% of the
MAC operations (reduced to accumulation-only operation in
SNNs) in Eqn. (1) during the forward propagation of training
(shown in Table VI in Section VII). A similar number of
gradients accumulated through timesteps in Eqn. (6) will also
decrease.

As we discussed above, f ′(U l
t) = 0 if U l

t is out of the β-
width Uth centered region. If f ′(U l

t) = 0, we can skip Eqn.
(3) that is the computation of ∇Sl

t. Further, the add operation
(corresponding to the second term in RHS) in Eqn. (4) as
well as the fetch of U l

t can be eliminated. We define this as
the sparsity in the gradient of the firing function (∇f ).

Finally, if ∇U l
t+1 = 0, we can skip the convolution

computation of ∇H l
t . We define this as the sparsity in the

gradient of potentials (∇U ). We summarize the sparsity-aware
version of gradient calculation for membrane potential below:

∇U l
t =

{
α∇U l

t+1(1− Sl
t) if sparsity in ∇f

∇U l
t+1α(1− Sl

t) +∇Sl
tf

′(U l
t) otherwise

(7)
We will utilize these opportunities to guide the architecture
design in the next section.

V. ARCHITECTURE DESIGN

A. Architecture and Dataflow of SATA

Similar to ANN training, convolution accounts for the ma-
jority of the computation workload in SNN training. Thus, we
follow the spatial architecture design (doing MAC operations
inside a processing element (PE) array) utilized by previous
ANN accelerator works [16], [28] for SATA. However, the PE
design for SATA needs to consider the difference in data rep-
resentation and computation units across distinct convolution
stages of SNN training, which will be explained later. Separate
computation units for updating the gradients of membrane
potential called potential gradient units (PGUs) are attached
to simplify the design of PEs. Further, since computations
in SNNs repeat for multiple timesteps, spatial dataflow that
suits previous ANN accelerators, for example, row-stationary
dataflow will no longer be energy efficient due to the repeated
data communication cost between computation units and mem-
ory. To this end, SATA adopts a tailored temporal dataflow
(namely, the combination of weight-stationary in [16] and tick-
batch in [14]) for SNN-training to reduce the total energy
overhead. We call this dataflow temporal weight stationary.

In Fig. 5, we illustrate the temporal weight-stationary
dataflow. The PE array has K PEs and they first generate
T (total timesteps) outputs for all K neurons that share the
position (0,0) across K output channels in the output feature
map. Each PE only works on one output neuron. To maximally
reuse the filters, each PE has a scratchpad to hold all the C
filters that participate in the computation at the corresponding
output channel. First, C input receptive fields (sized R × R)
for all the timesteps are fetched at once and shared by K PEs.
After the first computation cycle is done, all temporal and
spatial computations required by those K output neurons are
completed. We will write them back to memory and fetch the
next C×T input receptive fields to compute the K×T outputs
for the next K neurons. Notice that the same filters will stay
in each PE and be reused until all the outputs are generated for
the output feature map. By utilizing this dataflow, SATA fully
reuses the filters across T timesteps and reduces the repeated
accumulation cost of each output neuron compared to non-
temporal weight stationary dataflow.

The overall architecture for SATA is shown in Fig. 4(b).
The example configuration considers training a VGG5 SNN
with 8-bits resolution for all parameters in 8 timesteps [6].
We use 128 PEs and 128 PGUs in our design to facilitate
the maximum number of feature maps in a single layer in
VGG5. Generally, for other larger convolutional networks, the
number of feature maps per layer is often a multiple of 128.
We use a 144KB weight buffer to fit in the maximum number
of 8-bit filters between two layers. U and ∇U buffers are set
to 256KB for holding 8-bit potentials and gradients for 128
neurons across all timesteps. Similarly, the S buffer is set to
32KB due to the single-bit resolution of spikes.

B. PE Design for Different Computation Stages

There are three convolution stages in a complete cycle of
SNN training: forward convolution, backpropagate convolu-
tion, and weight update convolution. The PEs are designed to
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Fig. 4. Overview of SATA’s architecture. (a) The dashed line indicates the signal for PE control. Each PE is equipped with a multiplier for the MAC
operation during backpropagation and is attached to the circuit to carry out LIF computation during the forward computation (shaded in yellow). (b) The
SATA architecture is composed of 128 PEs and 128 PGUs to facilitate the maximum number of output feature maps among any single layer in VGG5. And
the different global buffers (GLBs) are also set to the corresponding size to facilitate maximum storage requirements among all layers in VGG5. (c) Each
PGU composes of the circuits to carry out the computation of ∇U as in Eqn. (3, 4).
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Fig. 5. Illustration of SATA’s dataflow. The filters stay stationary in PEs for
maximum filter reuse across timesteps. Further, each PE will only focus on
the computation for one neuron in one output feature map at a time. For
example, in the figure above, the pink-colored filters will be stored in PE1

and PE1 will be responsible for processing the pink-colored output pixel at
the output feature map for all timesteps T .

be able to carry out the computations among all three stages as
shown in Fig. 4(a). The filter scratch pads are set to the size
of 128 × 9 × 8 bits to be compatible with SATA’s dataflow
(considering most modern SNN architectures, like VGG, have
3× 3 sized kernels). The other two scratch pads are set to the
same size for making compatible computation with the filter’s
size.

1) Forward Stage: During the forward propagation, spike
activations S will be convolved with filters W for all timesteps.
Due to the 1-bit resolution of spikes, the multiplication will
be simplified to and operations. At each timestep, after all the
convolution partial sums are computed, the outputs go through
the LIF computation units (yellow-shaded components in Fig.
4(a)) to generate spikes and update the membrane potential. If
the input spike equals zero, the accumulation and the scratch
pad read of filters will be elided.

2) Backpropagation Stage: To backpropagate gradients
∇H through the convolutional layers, convolutions are per-
formed between 8-bit potential gradients ∇U and 8-bit filters
W . Notice that during the backpropagation, W needs to be
transposed into WT . This convolution is identical to the MAC-
based convolution in ANN except for the repetition across all
timesteps. Thus, we need an extra multiplier (see Fig. 4(a))

+

Input
Spad

128x9x8b

Psum
Spad

128x9x8b

x

Filter
Spad

128x9x8b

== Zero buffer

…

∇Ut+1,l

>>, α ¬ x +

∇	Ht,l+1Ut,l
Mask Gen

Zero buffer

(a) (b)

…

Fig. 6. Sparsity handling units inside PE and PGU. The red dash lines
indicate the signal for sparsity handling units. We only show the units related
to sparsity handling. (a) Leveraging input (S and ∇U ) sparsity to save MAC
and filter scratch pad reading. (b) Leveraging ∇f sparsity to skip the related
computations of ∇S.

in the PE to accomplish the operation. The multiplier will
be gated to save energy during the other two stages (namely,
forward convolution and weight update stages). if the sparsity
condition for ∇U is met, the MAC operation and scratch pad
read of filters will be elided.

3) Weight Update Stage: Finally, spike activations S stored
during the forward propagation are convolved with potential
gradients ∇U to generate the gradients for updating param-
eters W . This convolution reuses the computation units and
the sparsity handling units from the forward propagation due
to the identical data resolution. Again, this convolution needs
to be repeated for all timesteps.

C. Potential Gradient Units

We use PGUs to accomplish the computation in Eqns. (3)
and (4). The computation itself is straightforward, and we
show the computation unit design in Fig. 4(c)). PGUs will
first fetch Ut,l to check whether there is sparsity in ∇f . If the
sparsity condition is satisfied, PGUs will omit the computation
of ∇S. Notice that one PGU will generate a single timestep
∇U for one neuron at a time. The number of PGUs can be
configured to satisfy different throughput requirements. By
default, SATA uses 128 PGUs.

D. Discussion on Sparsity Handling

In this subsection, we discuss the details of how we handle
the sparsity inside PEs and PGUs. In general, we follow the
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Fig. 7. Baseline architecture for ANN training. The PE and overall architec-
ture design are based on Eyeriss, with additional hardware added to support
backpropagation.

gating method used in [29] to omit the computation of MAC
and memory read of filter scratch pad inside the PE when the
input is zero. During the forward and weight update stage, we
will directly use the spike input as the gating enable signal to
disable the forward data path from switching and filter scratch
pad from reading. During the backpropagation stage, similar
gating logic will be applied, however, instead of directly using
the input spike, we will use the bitmasks generated during the
writing of the gradients to the input scratch pad. We have an
extra 144-byte zero buffer to hold the bit masks.

In PGUs, we also apply a similar gating strategy as in PEs,
however, this time we will check the ∇f sparsity condition
as mentioned in section IV. During the writing of membrane
potential U into the scratchpad, the binary masks are generated
by monitoring Ut

l, such that, mask = 1 if |Ut
l −Uth| < β/2,

else mask = 0. Once the bitmasks are generated and stored in
the zero buffer, we then use the same gating logic as in PEs
to omit the multiplication and read of ∇H if the ∇f sparsity
condition is met.

E. Architecture of ANN baseline

To differentiate the training overhead of SNN (using BPTT
algorithm) and ANN (standard backpropagation algorithm),
we design a baseline architecture for standard backpropagation
(BP)-based ANN training. The PE and architecture design
is based on Eyeriss [16], an ANN inference accelerator that
has the basic optimizations (reuse, zero-sliding, and memory
hierarchy) that have been widely adopted in other ANN accel-
erator works [30]. In our baseline, we only attach necessary
computation and memory components to the original design
of Eyeriss to support BP-based training.

Inside the PE, we add a sign checker for carrying ReLU
operation. The sign checker generates a bit-mask that is
used during backpropagation to skip the unnecessary gradient
computations (if the activation after ReLU is zero, we can
skip the gradient calculation for that neuron during BP). Our
baseline supports the same zero-sliding techniques as proposed
in the original paper [16]. A 64KB global buffer is added to
hold the gradients during BP, together with an 8KB buffer
to hold the masks that were generated during forwarding
propagation.

In the original Eyeriss paper [16], the Row-Stationary
dataflow is utilized to exploit spatial reuse of ifmaps, filters,
and psums. However, a recent work [14] has already shown
that a rate-coded SNN is less energy efficient (up to ∼ 60×

more energy) when compared to the Row-Stationary-based
Eyeriss. As a result, we force our ANN baseline to use a
similar dataflow to the one of SATA, which is more SNN
friendly. Note, that SATA’s dataflow does not bring any redun-
dant memory or computation operations to the ANN baseline,
which ensures a fair comparison.

VI. ENERGY SIMULATION MODEL

In this section, we introduce our cost model for estimating
the energy consumption of processing one single image based
on SATA during SNN training. The total energy Etotal is
the sum of three components: computation energy, memory
energy, and the control circuit energy (noted as Ec, Em,
and Ectrl). We further divide the computation energy into
three stages as discussed above: forward computation energy,
backward computation energy, and weight update computation
energy (Efwd

c , Ebwd
c , and Ewup

c ). For the memory energy, we
also divide it into three stages (Efwd

m , Ebwd
m , and Ewup

m ). The
formula for total energy is shown below:

Etotal = (Efwd
c + Ebwd

c + Ewup
c )

+ (Efwd
m + Ebwd

m + Ewup
m ) + Ectrl.

(8)

We further divide the sub-stage energies into groups of sub-
operation energy that belong to a given stage. More specifi-
cally, we divide the computation energy of the forward stage
into the energy of MAC and LIF operation, the backward stage
into the energy of MAC and ∇U calculation, and the weight
update stage into the energy of MAC operation. For each
calculation operation type, the energy of all the units along the
computing path will be taken into consideration (for example,
the energy will be different for the MAC operation in the
backward stage and the other two stages, due to the different
computation path). We also divide the memory energy of all
three stages into the energy of communicating with DRAM,
global buffers, and scratch pads.

The general rule for calculating those sub-operation energies
is N × E, where N denotes the total number of the sub-
stage operation that SATA requires to process one image
and E denotes the energy consumption of a single operation.
Furthermore, we use N(sp) to indicate that N is the function
of a given type of sparsity sp (for example, Nfwd

mac (spS)
is the total number of MAC operations during the forward
propagation for SATA to process one image, and this number
can be optimized by sparsity in S). We provide the energy
cost estimation formula for all sub-stages as below:

Efwd
c = Nfwd

mac (spS)× Efwd
mac +NLIF × ELIF ,

Ebwd
c = N bwd

mac(sp∇U )× Ebwd
mac

+N∇U (sp∇f )× E∇U ,

Ewup
c = Nwup

mac (spS)× Ewup
mac ,

Efwd
m = Nfwd

dram × Edram +Nfwd
glb × Eglb

+Nfwd
spad(spS)× Espad,

Ebwd
m = N bwd

dram × Edram +N bwd
glb × Eglb

+N bwd
spad(sp∇f )× Espad,

Ewup
m = Nwup

dram × Edram +Nwup
glb × Eglb

+Nwup
spad(spS)× Espad,

(9)
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where Efwd
mac , Ebwd

mac, and Ewup
mac denote the different energy

of MAC operation in different sub-stage. ELIF denotes the
energy of the LIF operation in the forward stage and E∇U de-
notes the energy of gradient calculation of ∇U . Edram, Eglb,
and Espad denote the energy of a single time access to different
memory units. The number of MAC operation in three stages
are separately denoted as Nfwd

mac , N bwd
mac, and Nwup

mac , which can
be optimized by sparsity of S and ∇U . The number of LIF
operations and calculation of ∇U (can be optimized by the
sparsity of ∇f ) are also denoted by the corresponding N
notation. And the total number of data movement for three
stages are denoted by the corresponding N notation with the
stage name on the top and the memory component name on
the bottom, where the number of scratchpad reading can be
optimized by ∇f and S. Note that we consider the data access
of filters during the backpropagation into the weight update
stage.

In general, the number of computation operations is con-
trolled by the network architecture of the SNN, while the
number of memory movements will be determined by both
the SNN network architecture and the hardware architecture
and dataflow design. Table II provides the total number of
computation and data movement operations used in Eqn. 9 on
SATA for VGG5 as an example and a reference.

A. Energy model for considering the sparsity

In Eqn. 9, we define the total number of sparsity-related
operations as a function of the sparsity. Then the user can
define the abstraction level of the energy estimation results by
setting the energy cost for a single operation E. For example,
if one wants to test the theoretical maximum energy benefits
that SATA can get from the sparsity, then E can be set without
considering any sparsity handling overhead. If the user wants
to include the energy overheads of the sparsity handling units,
it can be easily done by including the energy overheads into E.
In Table III, we give examples of the energy with and without
sparsity handling units overheads. Then, the sparsity-aware
energy with sparsity-handling overheads can be approximated
by N(sp) × E(withoverhead) + N × E(overhead), where
E(overhead) can be calculated by simply subtracting the
energy of operation without overheads from the one with
overheads.

B. Discussion on Model Choice and Estimation Method

In this section, we discuss our choice for the energy
estimation model in Eqn. 8 and 9. The goal of our energy
model is to make it flexible and simple enough for users to
adjust the complexity and accuracy of the energy model. For
instance, as we will show in the later experiment setup, we
choose to neglect the Ectrl in Eqn. 8 when we compare the
training energy between SNNs and ANNs because the control
energy would be approximately identical between SNNs and
ANNs under the gradient-based training context. However, one
can always apply the control energy to Eqn. 8 to make the
energy value more accurate.

The estimation method used by our energy model is similar
to the methodology proposed by [17] and is verified in

TABLE II
THE DESCRIPTION OF SYMBOLS USED IN EQN. (9). THE TOTAL NUMBER
OF EACH OPERATION IS CALCULATED FOR A SINGLE IMAGE DURING ONE
FORWARD OR BACKWARD PROPAGATION ACROSS ALL TIMESTEPS. NOTED

THAT WE DO NOT SHOW THE SPARSITY REDUCTION OF SCRATCHPAD
ACCESSES IN THE TABLE FOR SIMPLICITY.

Parameters Description

C # of input feature map or filter channels

H input feature map width/height

K # of 3D filters or # of output feature maps

E output feature map width/height

R filter width/height

b maximum bitwidth (8 in SATA)

T # of timesteps (8 in SATA)

spS spike sparsity (# of zero spikes / # of total spikes)

sp∇f firing gradient sparsity
(# of invalid spike grads / # of total spike grads)

sp∇U potential gradient sparsity
(# of zero potential grads / # of total potential grads)

# of Ops Description

Nfwd,wup
mac T × (1− spS)×

∑L
l=1(C ×R2 ×K × E2)l

NLIF,∇U T ×
∑L

l=1(K × E2)l

N∇S T × (1− sp∇f )×
∑L

l=1 (K × E2)l

Nbwd
mac T × (1− sp∇U )×

∑L
l=1(C ×R2 ×K × E2)l

Nfwd
dram

∑L
l=1(K × C ×R2)l

+T ×
∑L

l=1(K × E2 + 1/b× C ×H2)l

Nfwd
glb 2×Nfwd

dram

Nfwd
spad 2×

∑L
l=1(K × C ×R2 + T × 1/b× C ×H2)l

Nbwd
dram T ×

∑L
l=1(K × E2 + 1/b× C ×H2)l

Nbwd
glb (5 + 2(1− sp∇f ))× T ×

∑L
l=1(K × E2)l

+
∑L

l=1(2T × 1/b× C ×H2 +K × C ×R2)l

Nbwd
spad

∑L
l=1(K × C ×R2 + T ×K × E2)

Nwup
dram 2×

∑L
l=1(K × C ×R2)l

Nwup
glb 2× (1 + T )×

∑L
l=1(K × C ×R2)l

+T ×
∑L

l=1(1/b× C ×H2 +K × E2)l

Nwup
spad Nwup

glb + 2× T ×
∑L

l=1(K × C ×R2)

[31]. Many prior works [31]–[35] also follow this method to
estimate the energy cost. Based on the prior works, we attach
SNN-specific parameters (e.g., T and sp∇f ) and consider
SNN-specific operations (e.g., LIF and potential gradients
update) to make the model work for SNNs. We can simply
detach those efforts to make the model work for our ANN
baseline.

VII. EXPERIMENT RESULTS

A. Experiment Setup

We use VGG5 [36] (configured as in Table V) as our
baseline network architecture for comparing the training en-
ergy difference between ANNs and SNNs. We train the
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TABLE III
ENERGY DIFFERENCE FOR A SINGLE OPERATION WITH AND WITHOUT
OVERHEADS FOR SPARSITY HANDLING UNITS. THE ENERGY UNIT IS
NORMALIZED IN TERMS OF THE ENERGY FOR A MAC OPERATION.

Operation Without Overhead With Overhead

Efwd
mac 0.146 0.146

Ebwd
mac 1.003 1.120

E∇U 0.952 1.078

TABLE IV
SYSTEM PARAMETERS FOR SATA AND EYERISS, WHICH ARE THE

BASELINE FOR SNNS AND ANNS.

Parameter SATA Eyeriss
Technology 65 nm CMOS 65 nm CMOS
Precision 8 bits (W, U), 1 bit (S, M) 8 bits (W, Z)
GLB size 256 KB (U, ∇U ) 32, 64 KB (Z, ∇Z)

144 KB (W) 144 KB (W)
32 KB (S) 8 KB (M)

Spad size 1.125 KB 1.125 KB
PE array size 128 128
PGU array size 128 -

VGG5 network on CIFAR10 with a learning rate of 0.001,
a momentum of 0.9, and a weight decay factor of 1e−4. For
SNN training, we further set the timestep as T = 8, leaking
factor as α = 0.94 , firing threshold as Uth = 0.75, and the
fire function width β = 2.5.

We use SATA-Sim [18] with the energy simulation model
in VI to approximate the training energy of ANNs from the 8-
bit version of our Eyeriss-based ANN baseline and SNN from
SATA both with the computing units synthesized in Synopsys
Design Compiler at 400MHz using 65nm CMOS technology
and the memory units simulated in CACTI [37]. Since the
main purpose of the energy results is for comparison, we
assume perfect gating and no control overheads during the
comparison (namely, assuming no leaking power for compu-
tation units when gated and setting Ectrl in Eqn. (8) to 0 for
both ANN and SNN). Unless otherwise stated, the hardware
specifications are listed in Table IV. All the energy results
denote the energy required to process one image and the unit
of energy is normalized in terms of the energy for a MAC
operation (e.g., 100 = energy of 100 MAC operations).

For performing energy analysis on sparse training, the
inherent sparsity is collected for both SNN and ANN baseline
during the training process. We collect the layerwise sparsity
of activation (arising due to ReLU non-linearity which only
passes non-negative values) and its gradient for ANNs and
collect three categories of sparsity (namely, S, ∇f , and ∇U )
for SNNs. All the SNN sparsity results are averaged across
total timesteps, the number of images, and training epochs.
The sparsity results are summarized in Table VI.

B. Training Energy: SNNs vs. ANNs

We first compare the training energy between SNNs and
ANNs without considering any sparsity in Fig. 8. In our
training scenario, SNN in total consumes 1.35× more energy
than ANN. We further break up the energy comparison results

TABLE V
NETWORK STRUCTURES FOR VGG5 AND VGG9. THE SYMBOLS C, MP,

AND FC DENOTE CONVOLUTIONAL, MAX-POOLING, AND FULLY
CONNECTED LAYERS, RESPECTIVELY. 64C3 REFERS TO A

CONVOLUTIONAL LAYER WITH 64 CHANNELS AND 3×3 KERNELS.

Network Structure Dataset
64C3-MP2-128C3-128C3- MNIST

VGG5 MP2-1024FC-10FC CIFAR10
CIFAR100

64C3-64C3-MP2-128C3-
VGG9 128C3-MP2-256C3- CIFAR10

256C3-256C3-MP2-1024FC-10FC

ANN spa_ANN SNN spa_SNN
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Fig. 8. Energy comparison between ANNs and SNNs, where spa-ANN and
spa-SNN refer to sparse ANN and sparse SNN, respectively.

into computation energy and memory energy. According to
our comparison, SNN consumes 3.28× more total computation
energy when compared to ANN and 1.28× more total memory
movement energy compared to ANN.

We then take sparsity into consideration. The sparsity re-
sults can be found in Table VI for SNNs and ANNs for
CIFAR10 on VGG5. With inherent sparsity, the sparse SNN
now consumes 1.27× more total energy compared to sparse
ANN. Specifically, sparse SNN consumes 1.19× more total
computation energy and 1.27× more total memory movement
energy compared to sparse ANN. Compared to non-sparse
SNN, SATA increases the computation energy efficiency of
sparse SNN by 5.58× by utilizing the sparsity. In Fig. 8, we
visualize the energy comparison results between ANNs and
SNNs for both non-sparse and sparse training. We break up
the energy results according to Eqn. (7) and (8). We further
visualize the layerwise computation energy for the sparse SNN
training in Fig. 9 and the break up of the total memory energy
in Fig. 10.

We make the following key observations from the compar-
ison results:

• We first identify that, in contrast to our impression that
SNN is more energy-efficient than ANN, SNN training
is more expensive (1.27× more even with sparsity)
than ANN training. Separating the total training energy
into computation and memory portions, we observe that
though we can utilize the rich sparsity in SNNs to shrink
the computation energy gap between SNNs and ANNs
(3.28× to 1.19×), the total energy gap (1.27×) is still
bounded by the memory energy gap (1.27×) between
two types of networks.

• With the previous observation, we then identify that
the memory communication energy is the bottleneck of
the total energy consumption in SNN training. This is
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Fig. 9. Layerwise computation energy results on VGG5.
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Fig. 10. Energy breakdown of the memory for VGG5 from the perspective
of (a) algorithm memory components and (b) hardware memory components.
In (a), the Gradients refer to the memory movement to calculate gradients
(∇U , ∇H , and ∇W ).

due to the expensive cost of accessing to GLBs and
DRAMs, which together compose 96.3% of the total
memory energy as shown in Fig. 10. While memory
energy dominates the energy gap between SNNs and
ANNs, sparsity hardly optimizes this energy inefficiency.
S and ∇f sparsity can only reduce the memory reads
from scratch pads inside PEs but can not optimize the
cost of accessing DRAMs and GLBs, which are the
most expensive operations in SNN training. Moreover,
the access to DRAMs needs to be repeated multiple
timesteps for reading and writing the necessary data (S
and U , etc.) for BPTT. In our experiments, due to the
small number of timesteps (T = 8), the memory access
energy for ANNs and SNNs is mainly bounded by the
DRAM access energy of filters (78% of the total memory
energy as shown in Fig. 10), which is the same for both
networks. We will show in the later section that larger
timesteps will exponentially separate the memory access
energy gap between ANN and SNN.

• We further break up the computation energy into three
computation stages to identify the computation energy
bottleneck for sparse SNN training. In fact, sparse SNN
consumes only 0.26× and 0.44× of sparse ANN’s com-
putation energy on the forward and weight update stage.
The major bottleneck for SNN’s training computation is
the backward stage where sparse SNN consumes 2.74×
more energy than sparse ANN. During the backward
computation, SNNs require the same multi-bits MAC
operation as ANNs but the operation needs to be repeated
for multiple timesteps. This repetition of MAC operations
is the source of computation energy inefficiency in SNN’s
backward computation.

• Though the memory energy bottleneck can not be easily
fixed with sparsity, the bottleneck for computation energy
(namely, backward stage) can be alleviated with sparsity

TABLE VI
ACCURACY AND LAYERWISE SPARSITY FOR VGG5. THE SPARSITY

SHOWN IS THE AVERAGE SPARSITY PER IMAGE PER TIMESTEP. Z DENOTES
THE RELU ACTIVATION OUTPUT FROM ANN.

Dataset Sparsity Layerwise Results (%)
inp cov1 cov2 cov3 lin4 lin5

MNIST S sparsity 68.83 93.03 91.98 98.06 92.91 -
Acc: 99% ∇f sparsity - 22.87 38.19 55.11 32.75 46.30
(SNN) ∇U sparsity - 94.14 85.02 94.65 67.93 57.01
CIFAR10 S sparsity 43.45 85.83 91.57 98.37 96.82 -
Acc: 75% ∇f sparsity - 39.33 69.79 80.95 62.20 37.18
(SNN) ∇U sparsity - 73.25 69.58 93.12 61.65 4.04
CIFAR10 Z sparsity 0.00 50.72 54.41 83.05 69.22 -
Acc: 82% ∇Z sparsity - 75.67 3.51 75.51 1.07 41.71
(ANN)
CIFAR100 S sparsity 47.16 86.17 89.58 98.47 94.32 -
Acc: 42% ∇f sparsity - 35.20 66.65 86.66 55.58 54.19
(SNN) ∇U sparsity - 70.10 65.09 95.00 54.66 10.58

in ∇U . The backward stage of the sparse SNN consumes
0.19× reduced energy than that of the non-sparse SNN.
By increasing the ∇U sparsity, the energy cost of the
backward computation stage can be further reduced (refer
to energy cost model in Eqn. (9)).

Fortunately, SNNs not only are highly sparse in spikes
but also inherently possess high sparsity in ∇U . We further
make the ablation studies on the sparsity of SNNs and their
relationship with SNN training energy in the following section.

C. Ablation Study on Sparsity and Training Energy

1) Sparsity and Datasets: We first study the effects of
different datasets on SNN’s sparsity. We train our VGG5
SNN model across three datasets: MNIST, CIFAR10, and
CIFAR100, with the same configurations as in the previous
section to generate sparsity results in the first 20 training
epochs. For each epoch, each type of sparsity is calculated
by averaging across images and timesteps. The results are
illustrated in Fig. 11. We also provide layerwise sparsity results
for three datasets in Table VI. Several points can be inferred:

• First, regardless of the choice of datasets, the spikes
(S sparsity) are highly sparse (> 94%) throughout the
training, which can help SNN save its computation energy
during the forward and weight update stages.

• Second, SNNs also possess a relatively high percentage of
∇U sparsity (on average 73% on CIFAR10 and 84% on
MNIST), which can help SNNs reduce the computation
energy for the backward stage.

• Furthermore, the sparsity of ∇f and sparsity of ∇U share
similar increasing trends with the increasing number of
training epochs. The sparsity-increasing effect is more
significant on complex training data (CIFAR100) as com-
pared to the simple one (MNIST).

2) Sparsity and SNN-unique Hyperparameters: We further
study how the training hyperparameters that are unique to
SNNs (namely, timestep T and firing width β in Fig. 2) affect
the sparsity and the training energy. We train our VGG5 SNN
model with different T and β to get different sparsity results,
as shown in Fig. 12. Fig. 13 shows the corresponding energy
results on sparse ANN and sparse SNN for a different choice
of hyperparameters that result in different levels of sparsity.
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Fig. 11. Sparsity results across datasets.
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Fig. 12. Sparsity across timesteps and firing function width.

As shown in Fig. 13, changing firing width has almost no
effect on the SNN training energy. Also, naively adjusting
T does not result in a proportional change in computational
energy. For example, while reducing T reduces the number of
repeated computation operations, it also reduces the sparsity
of ∇f and ∇U , and thus cancels out the saved energy
from reduced computation operations. As we discussed in
section 7.2, the memory communication energy is bounded
by the movement of filters on our VGG5 example. Thus, we
find that only the backward memory cost (which does not
involve movements of filters) is proportional to the number of
timesteps. We will have further discussions on the effects of
the timestep in the next section.

3) Sparsity and Network Depth: Finally, we study the
effects of network depth and sparsity. We further train a VGG9
network with the same training configurations as our previous
VGG5 model on CIFAR10 and get the average layerwise
sparsity results, as shown in Fig. 14. We observe that, while
S sparsity gets more sparse in the deeper layers, the changing
trend and average sparsity across layers are roughly the same
for both networks. For ∇U sparsity, both networks also share
a similar changing trend across layers. On average, VGG9
experiences less ∇U sparsity (∼ 60%) across layers compared
to VGG5 (∼ 70%). We generate the layerwise computation
energy with our energy estimation model and visualize the
results in Fig. 15 for VGG9.

D. Discussion

1) SNN training algorithm: In this section, we further
discuss some possible future directions for SNN algorithm
design to make SNN training energy-efficient. One direc-
tion would be to optimize the total computation energy. As
discussed in Section 7.2, the bottleneck for SNN training
computation energy is backward computation. This bottleneck
can be alleviated by introducing more ∇U sparsity during
the training. While simply adjusting the training parameters
can not effectively increase the ∇U sparsity, we provide a
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Fig. 14. Layerwise sparsity comparison between VGG5 and VGG9.

hypothetical analysis to show the tradeoff between the total
computation energy and the ∇U sparsity in Fig. 16. We use
the sparse ANN training energy as in section 7.2 and fix it. We
take the ∇U layerwise sparsity of CIFAR10 on VGG5 SNN in
Table VI as our baseline sparsity and gradually scale it up.We
observe that by increasing the ∇U sparsity, SNN training will
have less total computation energy overhead compared to ANN
training. At 88% of baseline, the SNN breaks even with ANN.

To optimize the total training energy of SNN, a large
number of timesteps should be avoided. We make a similar
hypothetical analysis as above on the relation between total
timesteps T and training energy of SNNs in Fig. 17. We
find that SNN’s total training energy exponentially increases
with the number of timesteps. This is because we need to
repetitively access DRAMs for T times for getting membrane
potential (U ) and spike (S) for BPTT. This expensive memory
operation will dominate the total energy when T gets large.
Apart from the energy dominance, the training time of SNN
will also increase as timesteps increase. Table VII shows how
the training latency gap between SNNs and ANNs gets bigger
when the timesteps increase.

TABLE VII
LATENCY COMPARISON OF ONE TRAINING EPOCH BETWEEN SNNS AND

ANNS WITH VARYING TIMESTEPS OVER VGG5 ON NVIDIA V100 GPU.

Network Latency of ANNs Latency of SNNs Latency Gap
VGG5 12.28 s 83.29 s (T = 4) 6.78×
VGG5 12.28 s 180.12 s (T = 8) 14.67×
VGG5 12.28 s 409.92 s (T = 16) 33.38×

Moreover, as we have shown in Fig. 10, energy for DRAM
data movement of the weights becomes the bottleneck of the
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Fig. 15. Layerwise computation energy results on VGG9.
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Fig. 16. Hypothetical analysis on how ∇U affects energy efficiency. B
denotes the layerwise density i.e. B = 1−sp∇U . sp∇U denotes the layerwise
sparsity due to ∇U .

SNN training. One possible future direction is to train the
SNNs with a sparsity constraint. The other possibility is to
compress part of or even the whole model through methods
like [38]–[40] and store the model on-chip as in [19].

2) SNN training accelerator & comparison with prior work:
In this section, we discuss some considerations for the future
design of SNN training accelerators based on the findings
from this paper. From our energy comparison results, we find
SNNs are less energy efficient than ANNs in a gradient-based
training setup. SATA being a general purpose architecture
targeted to perform fast energy estimation and comparison
between different SNN structures, we do not pay much ef-
fort to the architectural level optimization for BPTT-based
SNN training, except for the sparsity-aware PEs and PGUs.
One future direction for the SNN training accelerator design
would be optimizing the time-repetitive data movement for the
BPTT-based method. For instance, the SNN-dedicated design
proposed in H2Learn [15] indeed unveils some potential ways
to alleviate the memory movement bottleneck for SNNs. We
implement the LUT-based PE from the Forward Engine in
H2Learn [15] with 65nm CMOS technology and use the same
synthesis method as SATA. We compare the energy difference
between SATA’s PE and LUT PE on performing a convolution
using a 3 × 3 kernel for one timestep. The energy difference
is shown in Fig.18. Due to the LUT-based convolution that
H2Learn utilizes, the energy result for the convolution in
SNN’s forward propagation does not suffer from the time-
repetitive memory reading from scratchpads inside PEs. Also,
the LUT-based convolution is sparsity-independent. Thus,
SATA’s general purpose PE consumes approximately 21.2×
more energy on a 3×3 convolution workload without consid-
ering sparsity. When considering the sparsity, SATA can only
get the same energy efficiency as H2Learn with 93% sparsity
(not possible for a 3×3 kernel that delivers information). Note,
the above comparison is approximate, for example, the energy
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Fig. 18. Energy comparison between SATA and H2Learn for a forward
convolution workload (3× 3 kernel).

overheads of pre-calculating and loading the elements for
LUTs are not considered. Indeed, considering those overheads
would make the energy estimation and comparison between
the training of different SNN structures complex. That’s also
one major motivation for having SATA, a general purpose
architecture design for simple SNN training energy estimation
and comparison.

VIII. CONCLUSIONS

We propose SATA, a sparsity-aware BPTT-based training
accelerator for SNNs. The simple and highly re-configurable
systolic-based design of SATA makes it easy to perform a
training energy analysis on different SNN topologies. We
further propose an energy estimation model based on SATA
for energy estimation. Compared with not utilizing sparsity,
sparsity-aware SATA increases its computation energy effi-
ciency by 5.58×. The results also show that when running
on Eyeriss-like systolic-based architecture, SNN training re-
quires more energy compared to ANNs with and without
considering sparsity. We make several observations and show
how energy-efficiency trade-off with respect to different SNN-
specific training parameters. Our results and estimation tool
will hopefully guide future SNN algorithm works to design
more energy-efficient and sparsity-aware training mechanisms,
as well as future SNN training accelerator works to improve
their architecture design to be more energy-efficient.
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