
MINT: Multiplier-less INTeger Quantization for Energy Efficient Spiking Neural
Networks

Ruokai Yin, Yuhang Li, Abhishek Moitra and Priyadarshini Panda
Department of Electrical Engineering, Yale University. USA

Email: {ruokai.yin, yuhang.li, abhishek.moitra, priya.panda}@yale.edu

Abstract— We propose Multiplier-less INTeger (MINT) quan-
tization, a uniform quantization scheme that efficiently com-
presses weights and membrane potentials in spiking neural
networks (SNNs). Unlike previous SNN quantization methods,
MINT quantizes memory-intensive membrane potentials to an
extremely low precision (2-bit), significantly reducing the memory
footprint. MINT also shares the quantization scaling factor
between weights and membrane potentials, eliminating the need
for multipliers required in conventional uniform quantization.
Experimental results show that our method matches the accuracy
of full-precision models and other state-of-the-art SNN quanti-
zation techniques while surpassing them in memory footprint
reduction and hardware cost efficiency at deployment. For
example, 2-bit MINT VGG-16 achieves 90.6% accuracy on
CIFAR-10, with roughly 93.8% reduction in memory footprint
from the full-precision model and 90% reduction in computation
energy compared to vanilla uniform quantization at deployment.1

I. INTRODUCTION

Spiking Neural Networks (SNNs) [1] present a promising
alternative to Artificial Neural Networks (ANNs), excelling
in energy efficiency by processing sparse unary spike trains
(0,1) across discrete timesteps. This efficiency makes SNNs
ideal for low-power edge devices, as they operate with sim-
plified arithmetic units. Recent backpropagation-through-time
(BPTT)-based SNN efforts [2]–[4] have attained accuracy lev-
els in complicated vision tasks [5] that are on par with ANNs.
However, the curse of dimensionality has led to inflated model
sizes for SNNs to maintain competitive accuracy, making them
unsuitable for memory-constrained edge devices. While recent
efforts have explored compressing BPTT-based SNNs through
quantization [6]–[8], specifically reducing weight memory
size, two critical issues remain overlooked.

Firstly, prior works have not adequately addressed the size
of the membrane potential in SNNs. Each Leaky-Integrate-
and-Fire (LIF) neuron in an SNN requires a specific memory,
known as the membrane potential, to store temporal informa-
tion and generate output spikes. We observe that as weight
precision decreases, membrane potentials begin to occupy a
larger portion of the memory footprint, especially when using
mini-batches of inputs. For instance, the proportion of the 32-
bit membrane potential in the total memory footprint of the
VGG-9 SNN increases from under 20% to over 60% as weight
precision drops from 32-bit to 4-bit, as depicted on the left of
Fig. 1. Further, membrane potentials account for nearly 98%
of the overall memory footprint at a batch size of 32.

1Code is available at https://github.com/Intelligent-Computing-Lab-Yale/
MINT-Quantization

98.2%

37.2%

62.8%

82.6%

17.4% Conv *

Scale x

LIF +

! !!"

!#$%

Conv *

Scale x

LIF +

! !!"

!#$%
Vanilla UQ Ours

U U
global buffer
48.7%

scale-related
46.3%

others
5.0%

(a) (b)
Batch-1 Batch-1 Batch-32

Fig. 1: (a): Proportion of membrane potential (u) in the total
memory footprint of SNNs, varying with weight (w) precision
and mini-batch size. (b): Comparison of our MINT quan-
tization with vanilla Uniform Quantization (UQ), including
a breakdown of area cost for a 4-bit vanilla UQ SNN on
SpinalFlow [9]. Green indicates fixed 32-bit operations, while
blue denotes quantized operations scalable with operand sizes.

Secondly, the use of a scaling factor in Uniform Quantiza-
tion (UQ) [10], [11] by previous SNN quantization works [6],
[7] results in substantial hardware overheads during deploy-
ment. In the vanilla UQ method, the convolution result ob-
tained by convolving quantized weights with input spikes,
is multiplied by a full-precision (32-bit) scaling factor to
maintain high inference accuracy, as depicted in Fig. 1(b). This
necessitates power and area-intensive multipliers in systems
deploying SNNs, leading to significant hardware overheads.
For example, SpinalFlow [9], an SNN accelerator, allocates
46.3% of its system area to support scaling factors for a 4-bit
UQ SNN model, while convolution operations use only 5% of
resources, as shown in Fig. 1. Omitting the scaling factors in
UQ leads to substantial accuracy degradation at inference [11].

To address the aforementioned challenges, we introduce
Multiplier-less INTeger-based (MINT) quantization, a uniform
scheme for quantizing both weights and membrane potentials
in SNNs. During training, MINT retains scaling factors to
ensure competitive accuracy. However, during inference, we
demonstrate that using a shared scaling factor for weights
and membrane potentials eliminates the need for scaling
factors, thereby removing 32-bit multipliers on the hardware,
as illustrated in Fig. 1(b). Our key contributions are:
(1) We pinpoint two major hurdles in SNN quantization:
the memory-intensive nature of membrane potentials and the
hardware-resource demands of scaling factors. To address
these, we propose MINT, which quantizes both weights and
membrane potentials to extremely low precisions (2-bit) and
removes the need for scaling factors during inference without
sacrificing accuracy.
(2) Our experimental results show that MINT outperforms

𝑠!"#
𝑤!"

* +
𝑢!

fire 𝑠$%##

reset

T1 T2 T3 T4

Po
te
nt
ia
l 𝑣!"

T1 T2 T3 T4

T1 T2 T3 T4

ℎ!

𝑢!"#

Fig. 2: Illustration of the behavior of the LIF neuron.

state-of-the-art methods and full-precision baselines in total
memory footprint at iso-accuracy. For instance, our 2-bit
quantized VGG-16 model on CIFAR-10 achieves a remark-
able 93.8% reduction in memory footprint with a negligible
accuracy degradation of 0.6%.
(3) We designed an SNN accelerator in 32nm CMOS tech-
nology to compare MINT’s hardware performance with the
vanilla UQ method. We also evaluated MINT on two existing
SNN accelerators, SpinalFlow [9] and PTB [12]. Results in-
dicate that MINT significantly conserves hardware resources,
averaging an 85% reduction in PE-array area and a 90% reduc-
tion in computation energy compared to previous techniques,
making it suitable for edge deployment.

II. RELATED WORK

Quantization in SNNs has been thoroughly explored in
previous studies [6]–[8], [13]–[19], which can be classified
into three groups based on the SNNs’ training scheme.
BPTT-based SNNs The ADMM method in [7] optimizes
a pre-trained full-precision network to quantize weights to
low precision. Meanwhile, [6] employs K-means clustering
quantization to achieve reasonable accuracy with 5-bit weight
SNNs. A recent study [8] investigates fully integer-based
SNN training, with fixed-point quantized weights, membrane
potentials (in 8-bit to 16-bit range), and gradients. Our MINT
method also belongs to this category but eliminates scaling
factors and reduces both weights and membrane potentials to
extremely low precision (i.e. 2-bit).
STDP-based SNNs Recent works on weight quantization of
SNNs [13]–[17] have primarily focused on shallow networks
with local spike timing dependent plasticity (STDP) learning,
which does not scale for complex image classification tasks.
Conversion-based SNNs Several works investigate quanti-
zation in the ANN-to-SNN conversion technique. Those works
put their efforts into compressing the ANN activations to get
better energy and accuracy performance on the converted-
SNNs [18], [19] while keeping the weights and membrane
potentials at full or integer precision.

Additionally, prior efforts have explored pruning methods
to reduce the SNN size [6], [7]. Further, certain works
have proposed reducing the number of timesteps required for
processing an input which translates to energy and memory
savings on hardware [4]. MINT is orthogonal and comple-
mentary to these SNN-optimization schemes. Finally, there
have been separate hardware efforts to accelerate SNNs during
inference with temporal/spatial reuse dataflows of weights and
membrane potentials [9], [12], [20]. MINT can be deployed
on these accelerators without additional hardware resources.

III. PRELIMINARIES

Spiking LIF Neurons SNNs leverage Leaky-Integrate-and-
Fire (LIF) neurons to process unary spike trains across multi-
ple discrete timesteps. LIF neurons introduce non-linearity and
capture temporal information. The behavior of LIF neurons
during inference can be described in three stages. Firstly, in
the ‘update’ stage, the membrane potential matrix at layer
l, denoted as H

(t)
l , is updated using the weight matrix Wl,

input spike matrix S
(t)
l−1 from the previous layer at timestep t,

and the residual membrane potential matrix from the previous
timestep, U (t−1)

l :

H
(t)
l = WlS

(t)
l−1 + τU

(t−1)
l , (1)

where τ ∈ (0, 1] is the leakage factor simulating potential
decay. Next, in the ‘firing’ stage, the output spike matrix S

(t)
l

is determined by comparing H
(t)
l with a predefined threshold

vth:
S

(t)
l =

{
1 H

(t)
l > vth

0 else.
(2)

Lastly, in the ‘reset’ stage, the residual membrane potential is
reset to 0 if the output spike is 1, i.e. U (t)

l = H
(t)
l (1−S

(t)
l).

Fig. 2 illustrates the behavior of an LIF neuron. Throughout
the paper, we refer to the quantization of the membrane po-
tential as the residual membrane potential, denoted by U . For
training, we use the surrogate gradient method to approximate
gradients for the non-differentiable LIF neuron [3] and employ
the cut-off approximation for BPTT training of SNNs [4].
Uniform Quantization Uniform integer quantization (UQ)
methods, extensively studied in prior works [10], [11], involve
an affine mapping between the integer vector q and the
floating-point vector r, defined as follows:

r = α (q̂− Z) , (3)
where α is the scaling factor, and Z is the zero-point, both of
which are quantization hyperparameters. In n-bit quantization,
q̂ contains integers representing one of the 2n quantized levels
in the range [0, 2n]. The scaling factor α, a 32-bit floating-
point number, scales the quantized levels to closely match
the original distribution in r. The zero-point Z is an integer
that ensures r = 0 is precisely represented. Interestingly, we
found that omitting the zero-point does not affect the accuracy
of quantized SNN models. Hence, we exclude the zero-point
Z in subsequent discussions.

IV. MULTIPLIER-LESS INTEGER QUANTIZATION

A. Transform the LIF Equations

We begin by naively applying vanilla UQ to Eq. 1, using
distinct full-precision scaling factors α1, α2, and α3 for each
integer quantity. Assuming no output spike is fired at timestep
t, the ‘update’ stage equation is:

α3Û
(t)
l = α1ŴlS

(t)
l−1 + α2τÛ

(t−1)
l , (4)

which can be rewritten as

Û
(t)
l =

α1

α3
ŴlS

(t)
l−1 +

α2

α3
τÛ

(t−1)
l . (5)

In Eq. 5, assuming τ = 0.5 (computable by right shift),
the only non-integer multiplicands are α1/α3 and α2/α3. In
order to remove these two full-precision multiplications, we
assume α1 = α2 = α3 = α. By having all the scaling factors
equal to each other, we manage to transform Eq. 5 into:

Û
(t)
l = ŴlS

(t)
l−1 + τÛ

(t−1)
l . (6)

Eq. 6 now consists only of integer values and operations,
without requiring multiplication for the scaling factor. We
again naively apply vanilla UQ to Eq. 2. We find that the
‘firing’ stage generates an output spike of 1 only if the
following inequality holds true:

α1ŴlS
(t)
l−1 + α2τÛ

(t−1)
l > vth. (7)

Since α1 = α2 = α, we can divide both sides of the inequality
by α. Eq. 7 is thus transformed into the form of:

ŴlS
(t)
l−1 + τÛ

(t−1)
l >

vth
α

. (8)

We have empirically observed that α is always greater than
zero, which means that the direction of the inequality in Eq. 8
is always preserved. Additionally, since the left-hand side of
Eq. 8 is always an integer, we can transform Eq. 8 into the
following form and still generate the same output spikes:

ŴlS
(t)
l−1 + τÛ

(t−1)
l ≥

⌈vth
α

⌉
, (9)

where ⌈·⌉ is the ceil operation. We define this new integer
firing threshold ⌈ vthα ⌉ as θ, a constant that can be computed
offline. Empirically we find that it is enough to use less than
6 bits to represent θ for each layer. We will use Eq. 6 and
Eq. 9 as the new LIF equations for our MINT method during
inference.

Algorithm 1 Inference path at l-th layer of the MINT-
quantized SNN at timestep t. The leakage factor τ = 0.5.
Input:
Input spikes S

(t)
l−1 to the layer l at timestep t,

integer weights Ŵl of layer l,
integer membrane potential Û (t−1)

l of layer l at timestep t−1,
integer firing threshold θ of value ⌈ vthα ⌉.
Output:
Output spikes S

(t)
l to the layer l + 1 at timestep t,

integer membrane potential Û (t)
l of layer l at timestep t.

1: X
(t)
l ← ŴlS

(t)
l−1

2: H
(t)
l ←X

(t)
l +U

(t−1)
l >> 1

3: if H(t)
l ≥ θ then

4: S
(t)
l ← 1

5: Û
(t)
l ← 0

6: else
7: S

(t)
l ← 0

8: Û
(t)
l ←H

(t)
l

9: end if

B. Inference Datapath

As discussed in Sec. IV-A, sharing the scaling factor be-
tween weights and membrane potentials across timesteps for
each layer allows us to implement our quantization scheme
using integer-only arithmetic, eliminating the need for multi-
plications during inference.

The inference algorithm is detailed in Algorithm 1. First, a
convolution operation is performed between the input spikes
and weights. Given the unary nature of the input spikes
and the quantized integer weights, this convolution operation
simplifies to an integer-based accumulation. Then, the integer
convolution result X

(t)
l is added to the quantized integer

residual membrane potential U (t−1)
l to compute the membrane

potential H
(t)
l . The U

(t−1)
l undergoes a right shift by 1,

equivalent to being multiplied by a leakage factor of 0.5. Sub-
sequently, the integer membrane potential H(t)

l is compared
with the pre-defined integer firing threshold θ, as discussed in
Sec. IV-A. The comparison determines the generation of unary
output spikes. If no output spike is generated, the integer H(t)

l

is stored as the residual membrane potential U (t)
l . Conversely,

if an output spike is generated, a zero is stored as the residual
membrane potential.

This inference path is repeated for all other layers and
timesteps in SNNs, utilizing integer arithmetic exclusively and
effectively eliminating the need for multiplications.

C. Training with MINT Quantization

In the training’s forward path, we apply the quantization
function (refer to Eq. 10) to both weights and membrane
potentials. As mentioned in Sec. IV-A, our approach assumes
α1 = α2 = α3 = α. To realize this, we introduce a dummy
scaling factor α for each layer, which can be shared between
weights and membrane potentials. Consequently, the following
quantization function Q is applied during training:

Q(r, n) =

⌊
clamp

(
r
α ,−1, 1

)
s(n)

⌉
α

s(n)
, (10)

s(n) = 2n−1 − 1,

clamp(r, a, b) = min(max(r, a), b).

Here, r represents a full-precision floating-point number to
be quantized, and n is the number of bits assigned to the
quantized integer. Since we focus on uniform quantization in
this work, we use the same n for both weights and membrane
potentials across all layers and timesteps.

During backward propagation, we use full-precision
floating-point gradients for all quantities and employ the
straight-through estimator [10] to approximate the derivative
for the non-differentiable rounding function ⌊·⌉.

Moreover, instead of assigning a static scaling factor for
weights and membrane potentials as one of the hyperparam-
eters, we make α a learnable parameter. For each layer, a
distinct learnable full-precision scaling factor α is introduced.
The initialization of α is set to 2<|w|>

s(n) , where w denotes the
initial weight values. < · > and | · | represent the arithmetic-
mean and absolute value respectively. During backward propa-
gation, we update α with full-precision gradients. Empirically,
we observe that scaling the loss gradient of α by 1√

Nws(n)
ensures rapid convergence and optimal accuracy. Here Nw

denotes the total number of weights in each layer.

V. SNN ACCELERATOR DESIGN FOR QUANTIZATION

In recent systolic array-based SNN inference accelera-
tors [9], [12], [20], low-precision weights and membrane
potentials have been used to reduce memory and computation
costs. However, these designs normally neglect to include the
scaling units required for supporting vanilla UQ models. To
facilitate a comprehensive comparison of hardware perfor-
mance between MINT and vanilla UQ during inference, we
design and implement a systolic-array-based SNN accelerator,

PE …

…

… …

PE

PE

PE

Global
Buffers

DRAM

AC unit
!!"#
"

#!"#

+

LIF unit

! !$%##

+
<<
0

LIF unit MINT

#$%##

AC unit
!!"#sp

ad

#!"#

scale unit

LIF unit
"

x" <<

! !$%##

+
<<
0

LIF unit UQ

PE unit for MINT

PE unit for vanilla UQ

Technology CMOS32
PE array size 128
Global buffer size 144 KB
Spad size 1 KB

1

sp
ad

#$%##

Fig. 3: Systolic-array-based architecture with PE for deploying
vanilla UQ models, which require scaling factors, and MINT
quantized models, which do not. Blue units are scalable with
operand sizes, while green units are fixed at 32-bit.

as shown in Fig. 3. The accelerator adopts the temporal output-
stationary dataflow from [9], [20], where the accumulation
(AC) and LIF operations for each neuron remain stationary
in a processing element (PE) across all timesteps. We adopt
three levels of memory hierarchy: 1) an off-chip DRAM, 2) an
SRAM-based global buffer, and 3) a register-file-based scratch
pad.

We further provide two PE designs for the two methods.
For running the MINT models, each PE includes 1) an AC
unit to perform the ‘update’ stage, and 2) an LIF unit for the
‘firing’ and ‘reset’ stage. All arithmetic units in the MINT PE
are colored blue, indicating that their size can be scaled down
with the precision of weights and membrane potentials. For
running the vanilla UQ models, a scaling unit, comprising
a 32-bit multiplier and a shifter (for approximating the 32-
bit float multiplication using integer operation [10]), is added
between the AC and LIF units. Additionally, the LIF unit in
the UQ PE requires a 32-bit operand size to accomodate the
full-precision input from the scaling unit. All units denoted in
green have 32-bit precision. Both PE designs have two scratch
pad memories for holding the weights and input spikes. A
small register within the LIF unit stores the residual membrane
potential. All arithmetic units in both PE designs are integer-
based. We allocate 144 KB for the global buffer and 1 KB for
the scratch pad memory in each PE. And we set the PE array
size to 128.

VI. EXPERIMENTS

A. Experimental Settings

Algorithm Setups. We evaluate our quantization scheme
using three representative deep network architectures: VGG-
9 [21], VGG-16 [21], and ResNet-19 [22]. Our experiments
involve two static visual datasets: CIFAR-10 [23] and TinyIm-
ageNet [5], and one event-based dataset, CIFAR-10 DVS [24].
We compare our MINT method with the full-precision base-
line (fp32), i.e., the model trained with 32-bit floating-
point weights and membrane potentials. The training method
for MINT and the full-precision baseline is identical, except
that MINT applies the quantization function from Eq. 10

during forward propagation. We employ the direct encoding
technique [2] for training SNNs, which has proven effective in
training SNNs within a few timesteps. Unless stated otherwise,
all experiments use timesteps T = 4 (T = 8 for CIFAR10-
DVS) and a batch size of 128. We use the Adam optimizer
with a learning rate of 0.001. All models and training codes
are implemented in PyTorch, following previous work [4].
Hardware Setups. We synthesize the accelerator described
in Sec. V using Synopsys Design Compiler at 400MHz using
32nm CMOS technology. We use CACTI7.0 [25] to model
the on-chip SRAM and off-chip DRAM to obtain memory
statistics. Energy results are generated using SATASim, a
cycle-accurate SNN energy simulator [20].

B. Experimental Results

Accuracy. Table I summarizes the accuracy results. We
evaluate MINT across three bit-width groups: 2, 4, and 8.
For example, W8U8 denotes an SNN with both weights
and membrane potentials quantized to 8-bit integers. While
the full-precision baseline generally outperforms in terms of
accuracy across most datasets and networks, MINT remains
competitive, showing less than 1% accuracy drop in all tested
scenarios. Notably, some of our W8U8 and W4U4 models even
surpass the full-precision baseline in accuracy (e.g., a 0.2%
increase on VGG-16 TinyImageNet), which suggests MINT
may serve the purpose of regularization.

TABLE I: Accuracy comparison between MINT and full-
precision baselines across different precisions.

Method fp32
Precision (W - U)

8-8 4-4 2-2

VGG-9 (CIFAR-10) Top1-Accuracy (%)
MINT (Ours) 88.03 87.48 87.37 87.47

VGG-16 (CIFAR-10) Top1-Accuracy (%)
MINT (Ours) 91.15 90.72 90.65 90.56

ResNet-19 (CIFAR-10) Top1-Accuracy (%)
MINT (Ours) 91.29 91.36 91.45 90.79

VGG-16 (TinyImageNet) Top5-Accuracy (%)
MINT (Ours) 73.71 73.92 73.33 73.18

ResNet-19 (CIFAR10-DVS) Top5-Accuracy (%)
MINT (Ours) 94.2 94.4 94.5 93.7

Memory Saving. In this section, we first present the memory
footprint reduction achieved by MINT for a batch size of 1. As
depicted in Fig. 4(a), our W2U2 models, on average, yield over
93% reduction in total memory footprint. However, to enhance
inference speed, previous SNN works [2], [3], [26] often
employ mini-batch sizes greater than 1. In such scenarios,
the quantization of membrane potential becomes critical. As
shown in Fig. 4(b), the memory overhead of the membrane po-
tential grows significantly with larger batch sizes. For instance,
for a MINT-quantized VGG-16 model on TinyImageNet with
a batch size of 16, merely compressing the weight from 32-bit
to 4-bit results in a 15% reduction in total memory footprint.
In contrast, further quantizing the membrane potential to 4
bits leads to an additional 72.4% memory footprint reduction.
We anticipate even more pronounced benefits from membrane
potential quantization with larger batch sizes (greater than 64).

67.3%
20%

39.7%
47.7%

15%

72.4%

93%

93.7%
93.8%

(a) (b)

Fig. 4: Comparison of total memory footprint between full-
precision and MINT-quantized models. (a) Overall memory
reduction with a batch size of 1. (b) Memory reduction portion
for different batch sizes.

83%
90% 95% 97%

(a) (b)
Fig. 5: (a) Normalized computation energy comparison be-
tween MINT and vanilla UQ on VGG-9 CIFAR-10. (b) Nor-
malized memory energy cost of MINT for different operand
precisions.

Energy Saving. We examine the difference in inference
energy consumption between MINT and the vanilla UQ
method using the accelerator design proposed in Sec.V. We
normalize the results with the energy cost of a 16-bit integer
multiply-accumulate operation. Fig. 5(a) demonstrates that
the computation energy of the UQ model remains relatively
constant despite reductions in operand size, due to the energy-
intensive full-precision multipliers needed for scaling factors.
Conversely, MINT-quantized models, which do not require
multipliers within PEs, exhibit a substantial decrease in com-
putation energy as operand precision decreases. On average,
MINT consumes 90% less computation energy compared to
the vanilla UQ method. Fig. 5(b) highlights the memory
energy savings achieved through quantization. For instance,
our MINT-quantized W2U2 VGG-9 network attains an ap-
proximately 87.3% reduction in memory energy on CIFAR-10
compared to the W16U16 model.
Comparison to Prior Works. We benchmark MINT against
several state-of-the-art BPTT-based SNN quantization meth-
ods on the CIFAR-10 dataset, including STBP-Quant [8], ST-
Quant [6], and ADMM-Quant [7]. We ensure consistency in
weight precision, number of mini-batches, and number of
timesteps (T = 8) across all methods. Table II reveals that
our method is the first to explore compressing both weights
and membrane potentials to extremely low precision (< 8 bits)
while maintaining accuracy comparable to previous works.

We also showcase that, unlike previous quantization meth-
ods that depend on scaling factors, our MINT approach is
agnostic to the hardware design at deployment time and incurs
no additional hardware overheads. We synthesize two existing
SNN inference accelerators SpinalFlow [9] and PTB [12], with
two PE designs supporting both MINT and ADMM-Quant

TABLE II: Accuracy and total memory footprint comparison
to prior state-of-the-art SNN quantization work on CIFAR-10.

Method
(CIFAR-10)

Precision
(W / U)

Accuracy (%)
Top-1

Mini
Batches

Memory
Footprint (MB)

STBP-Quant 8 / 14 86.65 50 353.79
MINT (Ours) 8 / 8 88.25 50 95.41

ST-Quant 5 / 32 88.6 32 751.04
MINT (Ours) 5 / 5 88.04 32 59.62

ADMM-Quant 4 / 32 89.4 50 1279.66
STBP-Quant 4 / 10 84.99 50 248.39
MINT (Ours) 4 / 4 88.12 50 47.71

ADMM-Quant 2 / 32 89.23 50 1264.85
STBP-Quant 2 / 8 33.53 50 195.68
MINT (Ours) 2 / 2 88.39 50 23.85

Fig. 6: Area comparison between MINT and prior SNN
quantization methods using scaling factors.

as described in Sec. V. Fig. 6 illustrates the differences in
PE-array level area. When compared to the original ADMM-
Quant, which uses fp32 membrane potentials (admm-Ufp),
MINT achieves a reduction of 76% (93%), 86% (95%), and
93% (96%) in PE-array area with 8-bit, 4-bit, and 2-bit weights
on SpinalFlow (PTB), respectively. We also compare ADMM-
Quant with membrane potentials having the same precision as
the weights (admm-Uq). The trend of area reduction persists,
as ADMM-Quant still depends on scaling factors.

Fig. 7: Layer-wise speedup of VGG-16 on TinyImageNet on
NVIDIA A100 GPU.

C. Ablation Studies

In Fig. 7, we compare the layerwise inference latency of our
W8U8 MINT model with the full-precision baseline for VGG-
16 on TinyImageNet, implemented using CuDNN and tested
on an NVIDIA A100. Notably, the W8U8 model consistently
outperforms the full-precision baseline in terms of speed on
the first two layers and shows substantial acceleration on the
last three layers. Overall, MINT achieves a 17.4% acceleration
for TinyImageNet on the A100.

In Fig. 8(a), we display the average spike sparsity of
our MINT-quantized VGG-9 models on CIFAR-10 alongside
other state-of-the-art full-precision SNN works. The results

88.8%

85.9%

89.3%
90.6%

MINT (Ours)

Spike-BP

TSSL

BNTT

(a) (b)

Fig. 8: (a) Average spike sparsity of MINT versus other full-
precision SNN works: BNTT [26], TSSL [3], and Spike-BP
[27]. (b) Final test accuracy comparison.

indicate that our method does not lead to any reduction in
sparsity across different model precisions. By maintaining
high spike sparsity comparable to other SNN works, our
quantized models can benefit from similar computation energy
reductions [20], [26]. In Fig. 8(b), we compare the final test
accuracy of VGG-16 on CIFAR-10 between vanilla UQ and
MINT with various optimization techniques applied. In the
Naive share MINT, we use a predetermined scaling factor for
weights and membrane potentials, resulting in a nearly 3%
accuracy drop from the vanilla UQ. Making the shared scaling
factors learnable (L-share MINT) recovers the accuracy by
3.4%. Additionally, scaling the gradient of the learnable shared
scaling factors (L-share+GS), as discussed in Sec. IV-C, leads
to a further 1.3% increase in accuracy.

88.4%
87.5%

89.0%

W 95.5%

U 3.6%

S 0.9%

W 40.1%

U 47.9%
S 12%

VGG-9 CIFAR-10 W4U4

Batch size 1 Batch size 32

(a) (b)
Fig. 9: (a) Tradeoffs between accuracy (yellow line) and
normalized computation energy across timesteps. (b) Memory
energy breakdown: U for membrane potentials, W for weights,
and S for output spikes.

In Fig. 9(a), we demonstrate that our method is effective
with different timesteps using the W2U2 VGG-9 model on
CIFAR-10. While increasing timesteps slightly improves ac-
curacy, the computation energy linearly increases with the
timesteps. Lastly, we present a breakdown of memory energy
in Fig.9(b). The results align with previous observations on
membrane potential quantization. While the data movement
energy of weights dominates at a batch size of 1, the memory
energy cost of the membrane potential rises to 47.9% of the
total memory energy at a batch size of 32, underscoring the
importance of membrane potential quantization.

VII. CONCLUSION

In this paper, we presented the multiplier-less integer-based
(MINT) quantization method for SNNs, which compresses
both weights and membrane potentials. By sharing the quanti-
zation scale and transforming the LIF update equations, MINT
significantly reduces the memory footprint of SNNs without
incurring hardware overheads associated with scaling factors
in conventional quantization. Our approach achieves accuracy

comparable to full-precision baselines and other state-of-the-
art SNN quantization methods. In conclusion, MINT provides
a practical solution for minimizing memory footprint and hard-
ware requirements of SNNs without compromising accuracy,
opening up new possibilities for efficient SNN-based edge
computing.

ACKNOWLEDGMENTS

This work was supported in part by CoCoSys, a JUMP2.0 center
sponsored by DARPA and SRC, the National Science Foundation
(CAREER Award, Grant #2312366, Grant #2318152), TII (Abu
Dhabi), and the DoE MMICC center SEA-CROGS (Award #DE-
SC0023198).

REFERENCES

[1] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, 2019.

[2] Y. Wu et al., “Direct training for spiking neural networks: Faster, larger,
better,” in AAAI, 2019.

[3] W. Zhang and P. Li, “Temporal spike sequence learning via backprop-
agation for deep spiking neural networks,” NeurIPS, 2020.

[4] Y. Li, A. Moitra, T. Geller, and P. Panda, “Input-aware dynamic timestep
spiking neural networks for efficient in-memory computing,” DAC,
2023.

[5] J. Deng, “Imagenet: A large-scale hierarchical image database,” CVPR,
2009.

[6] S. S. Chowdhury, I. Garg, and K. Roy, “Spatio-temporal pruning and
quantization for low-latency spiking neural networks,” in IJCNN, 2021.

[7] L. Deng et al., “Comprehensive snn compression using admm optimiza-
tion and activity regularization,” TNNLS, 2021.

[8] P.-Y. Tan and C.-W. Wu, “A low-bitwidth integer-stbp algorithm for
efficient training and inference of spiking neural networks,” in ASPDAC,
2023.

[9] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and P.-
E. Gaillardon, “Spinalflow: An architecture and dataflow tailored for
spiking neural networks,” in ISCA, 2020.

[10] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in CVPR, 2018.

[11] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv:1806.08342, 2018.

[12] J.-J. Lee, W. Zhang, and P. Li, “Parallel time batching: Systolic-array
acceleration of sparse spiking neural computation,” in HPCA, 2022.

[13] H. W. Lui and E. Neftci, “Hessian aware quantization of spiking neural
networks,” in ICONS, 2021.

[14] C. J. Schaefer and S. Joshi, “Quantizing spiking neural networks with
integers,” ICONS, 2020.

[15] N. Rathi, P. Panda, and K. Roy, “Stdp-based pruning of connections
and weight quantization in spiking neural networks for energy-efficient
recognition,” TCAD, 2018.

[16] S. Hu et al., “Quantized stdp-based online-learning spiking neural
network,” Neural Computing and Applications, 2021.

[17] R. V. W. Putra and M. Shafique, “Q-spinn: A framework for quantizing
spiking neural networks,” in IJCNN, 2021.

[18] A. R. Voelker, D. Rasmussen, and C. Eliasmith, “A spike in perfor-
mance: Training hybrid-spiking neural networks with quantized activa-
tion functions,” arXiv:2002.03553, 2020.

[19] C. Li, L. Ma, and S. Furber, “Quantization framework for fast spiking
neural networks,” Frontiers in Neuroscience, 2022.

[20] R. Yin, A. Moitra, A. Bhattacharjee, Y. Kim, and P. Panda, “Sata:
Sparsity-aware training accelerator for spiking neural networks,” TCAD,
2022.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[23] A. Krizhevsky et al., “Learning multiple layers of features from tiny-
images,” 2009.

[24] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: an event-stream
dataset for object classification,” Frontiers in neuroscience, 2017.

[25] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, 2009.

[26] Y. Kim and P. Panda, “Revisiting batch normalization for training
low-latency deep spiking neural networks from scratch,” Frontiers in
neuroscience, 2021.

[27] C. Lee et al., “Enabling spike-based backpropagation for training deep
neural network architectures,” Frontiers in neuroscience, 2020.

