
LoAS: Fully Temporal-Parallel Dataflow for
Dual-Sparse Spiking Neural Networks

Ruokai Yin
Yale University

New Haven, USA
ruokai.yin@yale.edu

Youngeun Kim
Yale University

New Haven, USA
youngeun.kim@yale.edu

Di Wu
University of Central Florida

Orlando, USA
di.wu@ucf.edu

Priyadarshini Panda
Yale University

New Haven, USA
priya.panda@yale.edu

Abstract—Spiking Neural Networks (SNNs) have gained signif-
icant research attention in the last decade due to their potential
to drive resource-constrained edge devices. Though existing SNN
accelerators offer high efficiency in processing sparse spikes
with dense weights, opportunities are less explored in SNNs
with sparse weights, i.e., dual-sparsity. In this work, we study
the acceleration of dual-sparse SNNs, focusing on their core
operation, sparse-matrix-sparse-matrix multiplication (spMspM).
We observe that naively running a dual-sparse SNN on existing
spMspM accelerators designed for dual-sparse Artificial Neural
Networks (ANNs) exhibits sub-optimal efficiency. The main
challenge is that processing timesteps, a natural property of
SNNs, introduces an extra loop to ANN spMspM, leading to
longer latency and more memory traffic. To address the problem,
we propose a fully temporal-parallel (FTP) dataflow, which
minimizes both data movement across timesteps and the end-
to-end latency of dual-sparse SNNs. To maximize the efficiency
of FTP dataflow, we propose an FTP-friendly spike compres-
sion mechanism that efficiently compresses single-bit spikes and
ensures contiguous memory access. We further propose an FTP-
friendly inner-join circuit that can lower the cost of the expensive
prefix-sum circuits with almost no throughput penalty. All the
above techniques for FTP dataflow are encapsulated in LoAS,
a Low-latency inference Accelerator for dual-sparse SNNs. With
FTP dataflow, compression, and inner-join, running dual-sparse
SNN workloads on LoAS demonstrates significant speedup (up to
8.51×) and energy reduction (up to 3.68×) compared to running
it on prior dual-sparse accelerators.

I. INTRODUCTION

Spiking Neural Networks (SNNs) have attracted consid-
erable interest as potential energy-efficient substitutes for
Artificial Neural Networks (ANNs) [5], [11], [43]. Inspired
by the biological neuron, SNNs leverage highly sparse unary-
coded ({0,1}) spikes to compute and communicate infor-
mation [54]. Thus, running SNNs on hardware significantly
reduces computation and data movement, making it suitable
for edge computing. Therefore, SNNs have been widely used
in computer vision tasks, such as image classification [46],
[56], optical flow estimation [28], semantic segmentation [21],
and object detection [20].

Opportunity. As the need for edge devices with limited
memory capacity increases, recent research on SNNs high-
lights the significance of dual-sparse (both spikes and weights
are sparse), which can be achieved by neural pruning tech-
niques [5], [23]. Pruning the weight connections of SNNs has
been explored during both training [4], [49] and inference [38].

…

…

…

… ≈Temporal Sequential 
dual-sparse SNN

Tick-Batch Temporal Sequential

Partially Temporal Parallel

Fully Temporal Parallel (Ours)

Workload

Dataflow
X

X

✓ !!,! !!,#
1010 0111

!!,$

0000

X FTP-friendly
compression

U FTP-friendly
inner-join

Hardware

LoAS (Ours)

Layer 1 Layer 2 Layer N

Fig. 1. An illustrative example of FTP dataflow and LoAS. FTP dataflow is
shown along with the prior dataflow design for SNNs. Temporal sequential
tick-batch is from SpinalFlow [36], and partially temporal parallel is from
PTB [29]. Each arrow loop indicates the processing of one timestep. The
vertical line indicates that the processing is in parallel.

Certain works have managed to achieve approximately 98%
weight sparsity and 90% spike sparsity [23], leveraging the
lottery ticket hypothesis [13]. These works have outlined
the potential of dual-sparse SNNs in reaching unprecedented
energy efficiency and memory footprint with little to no
compromise in accuracy.

Challenge. Although dual-sparse SNNs have made strides
with algorithmic advancements, the hardware is not yet catch-
ing up to make full use of such dual-sparsity. In general, exist-
ing SNN accelerators can be categorized into two main groups.
First, multi-core neuromorphic systems1 employ a plethora of
cores, even chips, to exploit the inherent parallelism in spiking
neuron dynamics [1], [7], [14], [48]. Though capable of
capturing the massive parallelism and sparse activities across
neurons, multi-core neuromorphic systems require all neurons
(including weights) to be mapped on-chip. This undoubtedly
wastes a huge amount of hardware resources on the neurons
that are not involved in any computations due to the dual-
sparsity [40]. Second, dataflow-based SNN accelerators draw
inspiration from dataflow-based ANN accelerators and take
advantage of the rich data reuse among the array of processing
elements [29], [33], [36]. Nonetheless, these designs have
mainly focused on processing dense SNN workloads. Cur-
rently, there is a lack of dataflow architectures that uniquely

1We are not comparing with those systems due to our focus on single-core
dataflow SNN accelerator designs.



TABLE I
COMPARISON OF LOAS WITH PRIOR SNN ACCELERATORS. S AND T

DENOTE THE SPATIAL AND TEMPORAL DIMENSIONS. SPATIAL
PARALLELISM MEANS PE-LEVEL PARALLELISM.

Accelerator Spike Weight Parallel Neuron
Sparsity Sparsity support support

SpinalFlow [36] ✔ ✘ S LIF
PTB [29] ✔ ✘ S+partial-T LIF
Stellar [33] ✔ ✘ S+fully-T FS
LoAS (ours) ✔ ✔ S+fully-T LIF

target dual-sparsity in SNNs. Table. I summarizes existing
dataflow SNN accelerators.

Insight. Though spikes and weights have varying bitwidth,
in dual-sparse SNNs, their interactions follow the pattern in
sparse-matrix-sparse-matrix multiplication (spMspM), which
has been extensively studied in ANNs [9], [15], [18], [19],
[39], [41], [42], [51], [62], [64]. However, naively running
dual-sparse SNNs on existing spMspM accelerators is ineffi-
cient. The reason is multifaceted. First, the timesteps in SNNs
complicate the dataflow design for existing spMspM accel-
erators. spMspM operations in ANNs are triple-nested for-
loops [41], [55]. Different spMspM dataflows are obtained by
permuting the order of loops. However, in SNNs, the timesteps
introduce an extra level of for loop, leading to extra latency
and memory traffic. What’s worse, it constrains dataflow de-
pendency and doubles the dataflow design space, delaying the
time-to-solution. Second, the asymmetric bitwidth of spikes
and weights in SNNs makes it inefficient to use conventional
compression formats in ANN spMspM accelerators. Existing
ANN spMspM accelerators store sparse matrices with popular
compressed formats like compressed sparse row (CSR). These
formats usually have multiple bits to record the coordinates
of the non-zero values, and so does the hardware designed.
Consequentially, using multiple bits to compress single-bit
spikes (valued at either 1 or 0) is extremely inefficient for
dual-sparse SNNs.

Proposal. To solve these problems and unleash the potential
of dual-sparse SNNs in the presence of spMspM, we propose
fully temporal-parallel (FTP) dataflow, illustrated in Figure 1.
FTP dataflow parallelizes all timesteps to avoid complicated
dataflow dependency for minimized latency and memory traf-
fic. To maximize the efficiency of FTP dataflow on memory
and computation, we design FTP-friendly spike compression
and inner-joint mechanism. The proposed compression packs
spike along timesteps and can access the relevant memory
space in a contiguous manner. The proposed inner-join nearly
halves the cost of cumbersome prefix-sum circuits with almost
no throughput penalty compared to prior inner-join designs. To
validate FTP dataflow, we design LoAS, a Low-latency Infer-
ence Accelerator for Dual-Sparse Spiking Neural Networks.
Our contributions are listed below:

1) We observe that SNNs with rich dual-sparsity from both
input spikes and weight connections are sub-optimal
on existing hardware. SNN hardware usually does not
support sparse weights, while ANN spMspM hardware

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡! 𝑡" 𝑡#𝑡$

output: 0010

0

ReLU

output:
x if x>0 

0 else

Fig. 2. Difference between the LIF-based SNN neuron and ReLU-based ANN
neuron. We compare the behavior of LIF-based and ReLU-based neurons and
their hardware implementations.

fails to efficiently process timesteps in SNNs with low
latency and memory traffic.

2) To improve the efficiency of processing timesteps, we
propose a fully temporal-parallel (FTP) dataflow. FTP
avoids extra memory traffic across timesteps and min-
imizes the latency penalty in processing timesteps se-
quentially.

3) To make the most of FTP, we propose FTP-friendly
spike compression for efficient yet contiguous memory
access and an FTP-friendly inner-join mechanism for
low-cost computation with almost no latency penalty.

4) We build LoAS, a novel architecture that exemplifies
the FTP dataflow. With both FTP-friendly compression
and inner-join, LoAS is able to achieve high speedup
and energy efficiency against other sequential-running
spMspM baselines.

The remainder of the text is organized as follows. Section II
reviews the background and justifies the motivation. Section III
and IV articulates our proposed FTP dataflow and LoAS
architecture. Next, Section V and VI evaluate our design.
Finally, Section VII and VIII discuss and conclude this work.

II. BACKGROUND AND MOTIVATION

A. Preliminary of SNNs

1) Leaky-Integrate-and-Fire Neuron: The Leaky-Integrate-
and-Fire (LIF) neuron is a classical neuron model [8] and
widely adopted by prior SNN works [23], [24], [63], [65],
thanks to its bio-plausibility and high accuracy. In this work,
we focus on accelerating the workloads of dual-sparse SNNs
that use LIF neurons.

During inference, each layer has an input spike tensor A ∈
UM×K×T where U ∈ {0, 1} and a weight matrix defined as
B ∈ ZK×N . Here T is the number of total timesteps; M ,
N , and K are the spatial dimensions of the input and weight
matrix. The behavior of an SNN layer can be described below:

Step 1: Sparse Matrix Multiplication Sparse matrix multi-
plication across all timesteps is performed to obtain the full
output matrix O ∈ ZM×N×T , which will be sent to LIF
neurons.

Om,n[ti] =

K∑
k=0

Am,k[ti]Bk,n, (1)

2



where the ti is the current timestep. With dual-sparsity, sparse
matrix multiplication becomes spMspM.

Step 2: LIF firing LIF neurons take the snapshot of O at
timestep ti and generate a snapshot of the output spike tensor
C ∈ UM×N×T for current timestep ti:

Cm,n[ti] =

{
1 Xm,n[ti] > vth
0 else, (2)

where
Xm,n[ti] = Om,n[ti] + Um,n[ti−1].

Here, U [ti−1] is the membrane potential that carries over the
temporal information from previous timestep ti−1, and vth is
the firing threshold, a pre-defined scalar value.

Step 3: Membrane Potential Update After the output spikes
are generated, we update the membrane potential that will
carry residual information to the next timestep according to
the equation below.2

Um,n[ti] = τXm,n[ti](1− Cm,n[ti]), (3)

where τ ∈ (0, 1) is the leaky factor. From the above equations,
we observe that to generate the output spike matrix C for
timestep ti, we need to know the information from the previous
timestep U [ti−1]. This brings temporal dependency between
output spike matrices across timesteps. The behavior of a LIF
neuron can be found in Figure 2.

2) Spike Encoding and SNN Training: One key step in
leveraging SNNs in conventional machine learning tasks is
encoding the input source data (e.g., image pixels or text
embeddings) into spike trains across multiple timesteps. The
input spike trains are then sequentially sent to the SNN
for processing. Recent SNN works adopt direct encoding (a
special case of rate encoding) to achieve high accuracy on
conventional computer vision tasks in very few timesteps
(≤ 4) [?], [23], [25], [57], [65]. In direct encoding, the
source data, instead of being directly converted into spike
trains, first goes through one ANN layer. The output from
the ANN layer is then converted into spike trains. We will
focus on accelerating direct-coded dual-sparse SNNs in this
work. The SNNs are trained using backpropagation-through-
time (BPTT) [53] with surrogate gradient [37] to achieve very
close performance to ANNs on many complex tasks [57],
[65].

B. Distinctive Features and Challenge of SNNs

Several distinctive features make SNNs favorable for low-
power edge deployment, but they also come with challenges.

Feature 1: Unary Activation One of the most distinctive
features of SNNs is their unary spike activation. More specif-
ically, the SNNs leverage single-bit non-weighted activation
to propagate information through layers. The primary benefit
of the unary activation is the simplified low-power arithmetic

2We focus on the hard reset (membrane potential is reset to zero if there is
an output spike of one) in this work. Though there exist other reset schemes,
sticking with one of them will not lose generality in the hardware design.

units that they require. As shown in Figure 2, compared to
the multiply-accumulate (MAC) of ANNs, SNN only requires
simple bitwise-AND and accumulate (AC) operations during
inference time.3 Without the expensive multipliers [16], the
computations for SNNs require extremely low power and area.

Feature 2: Sparse Spike Activity The second feature of
SNNs is their highly sparse spike-firing activity. In ANNs,
upon completion, MAC results go through the ReLU unit,
which filters out non-positive outputs. Different from ANNs,
AC results in SNNs go through the Leaky-Integrate-and-Fire
(LIF) unit, which only fires (generates an output of 1) when the
input is greater than a pre-set threshold. As a result, the output
sparsity in SNNs is usually much higher (∼ 90%) [60], [61],
[63], [65] than that of ANNs (∼ 50%) [41], [45]. More sparse
outputs apparently lead to more computation and memory
saving under the context of spMspM acceleration.

Challenge: Repeated Timesteps Despite the aforementioned
hardware-friendly features, one main challenge of deploying
SNNs on hardware is their intrinsic repeated timesteps. A
timestep is the minimum unit of time in SNNs, thus discrete.4

In one timestep, each neuron needs to complete the AC
operations for all inputs, fire a spike if necessary, and update
its membrane potential (will be discussed shortly). The SNN
needs to run across multiple timesteps to capture the temporal
dynamics from the input data, as shown in Figure 2. Running
multiple timesteps increases latency and fails to be energy
efficient, diluting the advantage of low-power circuits unless
we have a specialized architecture design [36].

C. spMspM Dataflows in SNNs

There are various ways to map spMspM onto hardware,
each with unique efficiency [31], [34]. Three different spM-
spM dataflows have been proposed in existing dual-sparse
ANN accelerators: Inner-product (IP) [15], [18], [19], [42],
Outer-product (OP) [9], [39], [41], [64], and Gustavson’s
(Gust) [51], [62]. In Figure 3, we illustrate these three
dataflows in SNNs for two input matrices A and B, and an
output matrix C. We also formulate their abstract loop nests
on the right-hand side. As we discussed in Section II-B, it is
impossible not to consider the multiple timesteps for spMspM
operations in SNNs.

Inside the black box in Figure 3, the dataflow is for one
timestep, thus identical to ANN dataflow. Outside the black
box, multiple input matrices A (blurred) represent the input
spike matrices across different timesteps, which need to be
processed. Meanwhile, multiple output spike matrices C that
have temporal dependency between each other are also gener-
ated. Specifically, to accommodate the timesteps in SNNs, we
need to consider one more loop dimension (t dimension) in
the original triple-nested for-loop. The t dimension (annotated
in the blue box) brings temporal dependency to each output

3There exist other implementations using multiplexers instead [29], [36].
We focus on using bitwise-AND gates in this work.

4Timestep is also called tick [36] or time-point [29] in other works. We
follow the naming convention adopted by the latest SNN algorithm works.

3



…

C[m,n,t] += A[m,k,t]*B[k,n]

for k in [0,K-1] 
for m in [0,M-1] 

for n in [0,N-1] 
× =

N
K

N
M

A[𝑡!] B C[𝑡!]

M
K

A[𝑡"#$] C[𝑡$] C[𝑡"#$]A[𝑡$]

…
1

3

…
for m in [0,M-1] 

for n in [0,N-1] 
C[m,n,t] += A[m,k,t]*B[k,n]

for k in [0,K-1] × =

N
K

N
M

A[𝑡!] B C[𝑡!]

M
K

A[𝑡"#$] C[𝑡$] C[𝑡"#$]A[𝑡$]

…
13

3

× =
for m in [0,M-1] 
for n in [0,N-1] 

for k in [0,K-1] 
C[m,n,t] += A[m,k,t]*B[k,n]

N
K

N
M

A[𝑡!] B C[𝑡!]

M

…

K

A[𝑡"#$] C[𝑡$] C[𝑡"#$]A[𝑡$]

…
1

2
1

3

Inner-Product dataflow

2

2

T

Gustavson’s dataflow

Outer-Product dataflow

2
1

3

2
1

3

2
1

3
for t in [0,T-1] 

for t in [0,T-1] 

for t in [0,T-1] 

T

Fig. 3. Comparison of different spMspM dataflow for SNNs. Here, for illustration purposes, we put C[ti] as the spMspM result between A[ti] and B to
align with spMspM in ANNs. In SNNs, we need to go through one more LIF step (Equation (2)) to get C[ti]. The circled numbers illustrate the order of
computation for the specific spMspM dataflow. Please note that we fix the position of t dimension for illustration purposes. In practice, there will be a total
of 16 possible permutations of spMspM dataflow in SNNs, which we will discuss in Section III.

pixel in SNNs. For example, to process the SNN using IP
dataflow as shown in Figure 3, we first calculate the output
cell at (0,0) position for timestep 0 (C[0,0,0]), then instead
of moving to the position (0,1), we move on to process the
output cell at (0,0) for timestep 1 (C[0,0,1]). Since the output
cell C[0,0,1] is temporal dependent on the result of the output
cell C[0,0,0], we cannot process C[0,0,1] before C[0,0,0].

D. ANN spMspM Hardware for dual-sparse SNNs

We review existing ANN spMspM accelerators to under-
stand why naively running dual-sparse SNNs on these accel-
erators is sub-optimal.

Inner-join Design: For the IP dataflow, prior accelerators
usually adopt the inner-join-based design [9], [15]. In such
designs, non-zero values in rows of matrix A and columns
of matrix B are compressed using bitmask representation (a
bit string that has 1’s for positions with non-zero values
and 0’s otherwise). An inner-join unit scans two bitmasks
on the fly to determine if there’s a matched position (both
multiplicands are non-zero) and then sends the matched pairs
to the compute units. Running dual-sparse SNNs on an inner-
join-based design does not require the extra bit-masks for the
input spike matrix A (the unary spike train itself can be viewed
as a bit-mask). However, as shown in Figure 4, the timesteps
will impose multiple extra rounds of running the expensive
inner-join units (e.g., occupying roughly 46% of the system-
level power [15]), thus incurring high energy cost. Moreover,
since the spike trains are used as bit-masks, all the spikes,
no matter 1 or 0, are necessary to be fetched from off-chip
DRAM. This brings no memory traffic saving on the sparse
spike matrix A.

Merger-based Design: Unlike IP dataflow designs that ex-
hibit full output matrix (C) reuse, OP and Gust dataflow
designs focus on the reuse of input matrix A and B. In OP,
each column of A and each row of B will only be transversed

U

Bitmask B

Original data A

data-A

data-B

Original data B

3 9

65

3

6

: Inner-join

U

~45%System
Power

*

Inner-join Design (ANN) 

0

00 1 0 1

10 1 0 0

1001

0 0010

0 0110

Bitmask A
𝑡!

𝑡"
𝑡#

0000𝑡$ 0

MAC

(SNN)

𝑡!

𝑡"𝑡#

𝑡$

65 000

30 900

Fig. 4. An example of the inner-join design. The difference between the
behavior of ANN and SNN is shown. *Data from SparTen [15].

AlexNet-L1 VGG16-L8 ResNet19-L8

Fig. 5. Off-chip traffic of partial sum matrices on different SNN layers. We
envision SNNs with a timestep of 1 and 4 running on GoSPA [9], an OP
dataflow spMspM accelerator.

once, leading to efficient input data reuse. However, one partial
sum is generated at a time and merged later. While these
two dataflows have better data reuse on the input matrix, the
partial sum matrices (rows) potentially bring more off-chip
data traffic. To amortize the large memory traffic of partial
sums, some designs implement large and costly mergers (e.g.,
38× more area than multipliers [64]) to merge as many as
partial sum matrices (rows) before sending them back to the
off-chip DRAM. Due to the extra t dimension, running dual-
sparse SNNs on a merger-based design either requires a more
complex merger that is capable of digesting the extra partial
sum traffic or incurs more off-chip memory traffic. As shown
in Figure 5, for a timestep of four, on average, 4× more partial
sum traffic will be induced compared to a single timestep.

4



Time𝑡! 𝑡" 𝑡# 𝑡$

Time𝑡! 𝑡" 𝑡# 𝑡$

Time𝑡! 𝑡" 𝑡# 𝑡$

…

neuron-i

neuron-i+1

neuron-j

group-i

group-i+1

group-j

…

win-1 win-2
𝑡!

𝑡"

𝑡#

𝑡$

Systolic-array of PEs

Fig. 6. Example of PTB’s partially temporal parallel design. Each column
of the PE array processes a time-window that consists of multiple timesteps.
Different time-windows run in parallel, but the timesteps inside the window
are still processed sequentially.

E. Dataflow Architecture for SNNs

SpinalFlow: Temporal Sequential Design. SpinalFlow [36]
is the first SNN-tailored accelerator for extracting the effi-
ciency from the single-bit activation and the extremely sparse
spike activity. The authors identified the challenge of sequen-
tially processing the entire SNN network through timesteps.
To overcome the challenge, SpinalFlow proceeds all timesteps
for one layer and then proceeds to the next layer, as shown in
Figure 1. SpinalFlow dispatches LIF neurons across different
processing elements (PEs) and parallelizes the computation.
Within each layer, the timesteps are processed sequentially,
as shown in Figure 1. Spinalflow is optimized exclusively
for the temporal-coded SNNs that potentially lag in terms
of accuracy performance compared to rate-coded SNNs [29].
In this work, we focus on accelerating spMspM for general
rate-coded SNNs that yield competitive accuracy as ANNs in
various tasks.

PTB: Partially Temporal Parallel. While SpinalFlow’s de-
sign is tailored to the temporal-coded SNNs, PTB [29] pro-
poses a general architecture design for the rate-coded SNN.
By leveraging the high data-reuse pattern across different
PEs in the systolic array architecture [27], PTB breaks the
processing of all timesteps into multiple time-windows (each
consists of several contiguous timesteps) and run these time-
windows in parallel, as shown in Figure 1. PTB parallelly
maps multiple time-windows across different columns of the
systolic array. The computation of different LIF neurons is also
parallelized across the rows of the systolic array. We illustrate
this hardware mapping strategy in Figure 6 with details.
Though PTB tries to parallelize the processing of timesteps,
the parallelization is on the granularity of the time-window.
Inside each time-window (column of PEs), the timesteps are
still processed sequentially. Consequently, we categorize PTB
as a partially temporal parallel design. One unique aspect of
LoAS from PTB is that LoAS places the temporal dimension
in the inner-most loop, enabling all optimizations.

Prior SNN accelerators with LIF neurons process timesteps
in a sequential or partially parallel manner. In this way, as
we discussed in (Section II-C & II-D), it is very challenging
for those existing SNN designs to have good performance on
spMspM SNN acceleration. Thus, we need a spMspM-friendly
strategy to process timesteps.

Algorithm 1 Fully Temporal-Parallel dataflow (FTP)
Input:
Input spike matrix A ∈ UM×K×T (U ∈ {0, 1})
Weight matrix B ∈ ZK×N

Output:
Output spike matrix C ∈ UM×N×T

1: for m ∈ M do
2: for n ∈ N do
3: for k ∈ K do
4: parallel-for t ∈ T do ▷ Spatially unrolled
5: O[m,n, t] += A[m, k, t]×B[k, n]
6: end for

parallel-for t ∈ T do ▷ Spatially unrolled
7: C[m,n, t] = LIF (O[m,n, t])
8: end for
9: end for

Stellar: Fully Temporal Parallel but with non-LIF neurons.
Stellar [33] is another systolic array SNN accelerator which
attempts to process timesteps in a fully parallel manner.
Nonetheless, Stellar focuses on optimizing for the Few Spikes
(FS) neuron [52], as shown in Table I. FS neurons behave dif-
ferently from LIF neurons by detaching the spike accumulating
and firing stages. Therefore, FS neurons naturally do not have
temporal dependency among the input data at the spike accu-
mulation stage. This makes fully parallel temporal processing
straightforward in Stellar. On the contrary, as discussed in
Section II-A, temporal dependency naturally exists in the input
data for the LIF neuron, which makes its design space different
from the one in Stellar for fully temporal parallel processing.
Unlike the widely adopted LIF neurons, supporting FS neurons
also requires non-trivial algorithm-hardware codesign, which
is out of the scope of this work.

III. FULLY TEMPORAL PARALLEL DATAFLOW

We propose a fully temporal-parallel dataflow (FTP) that
targets reducing the negative effects of repeatedly processing
the timesteps on spMspM accelerators (Section II-D). The
proposed FTP is formulated in Algorithm 1.

An SNN-friendly spMspM dataflow should satisfy three
goals: (1) avoid as much data refetch as possible across the
timesteps; (2) generate as few partial sums as possible on
the temporal dimension (timesteps); (3) reduce the latency as
much as possible on the temporal dimension to reduce the
extra cost of sparsity handling units.

Our first observation is that for all three spMspM dataflows
(Section II-C), unless placing the temporal dimension (t-dim)
at the innermost loop, it will bring at least T times more
data refetch to the dimensions below, compared to the original
dataflow. For example, in OP, if t-dim is placed between m
and n, T times more access to B’s rows is required. If t-
dim is placed between k and m, T times more access to
A’s columns and B’s rows is required. Depending on the on-
chip buffer capacity, repeated memory access might lead to

5



more expensive access to the off-chip memory, which opposes
goal (1).

Our second observation is that both OP and Gust dataflow
are not suitable for dual-sparse SNNs since they oppose
goal (2). In OP dataflow, we observe that no matter where we
insert the t dimension into the original triple-nested loop, we
always produce T times more partial sum matrices compared
to the original OP dataflow. The partial sums need to be stored
in an on-chip cache till all partial sums along both spatial (k)
and temporal dimensions (t-dim) are accumulated. This will
add extra memory overhead in OP. The same problem also
exists for Gust dataflow. The t-dim will either generate T
times more partial sum rows or have T times more access
to both k and n dimensions. The last observation is that
regardless of the position of t-dim, as long as we process it
sequentially, it always incurs T times more processing latency,
which opposes goal (3).

Our solution is straightforward but effective. We first choose
to position the t-dim at the innermost of the IP dataflow, as
given in Algorithm 1. This design choice has several advan-
tages. Firstly, putting the t-dim at the innermost loop ensures
that no extra data movement will be incurred (goal (1)).
Secondly, since IP dataflow has efficient output reuse, no
extra partial sums will be generated on the t-dim (goal
(2)). Lastly, we fully parallelize the t-dim and eliminate the
latency brought by sequentially processing timesteps. This is
equivalent to transforming the for-loop of t into a parallel-
for loop [55]. This parallel-for loop parallelizes the operation
across different spatial instances, requiring minimum hardware
overheads due to only cheap accumulators being duplicated,
and timesteps of direct-coded SNNs are small (Section II-A).
We later show in the ablation studies that FTP scales well
with the increasing timesteps.

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI

F

P-
LI

F

P-
LI

F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask 
AB

𝑿𝒕𝑻"𝟏

𝑿

…

Fetcher
A

+
𝑿𝒕𝟎

0

+

𝒗𝒕𝒉𝑿𝒕𝟎
<<

0 <<

𝑿𝒕𝟏

+𝑿𝒕𝑻"𝟏

…
…

𝑶𝒕𝑻"𝟏

𝑶𝒕𝟏

𝑶𝒕𝟎

v

ch
ec
ke
r

Fig. 7. Architecture of LoAS and the microarchitecture of the TPPE. Red
arrows are the enable signals that skip the computation on 0 spikes [59].

IV. LOAS

An overview of LoAS is shown in Figure 7. LoAS consists
of multiple temporal parallel processing elements (TPPEs) and
parallel Leaky-Integrate-Fire units (P-LIFs) that are tailored to
run the FTP dataflow; a scheduler that distributes workloads
across TPPEs; and a compressor that compresses the output

0 0 01
0 0 1

0 0 0 1
1 0 0 1

row 0 in A

k=0 k=3…

0

A[𝑡!]
A[𝑡"]
A[𝑡#]
A[𝑡$]

Unpacked Real Data

ptrbm1001

𝑎$,$𝑎$,!
1010 0111

Compressed Fiber
𝑡$ 𝑡# 𝑡" 𝑡!

position 
𝑎&,'

𝑎$,$
𝑎$,#
𝑎$,"
𝑎$,!

Input Neuron Behavior

𝑎$,$𝑎$,#

1010 0111

𝑎$,"𝑎$,!

0000

0000
Packed Real Data

A[𝑡$,𝑡#,𝑡",𝑡!]

1

2

3

Fig. 8. Example showing how input spikes are compressed in LoAS. bm
stands for the bitmask, and ptr stands for the pointer.

spikes from P-LIFs and writes them back to the on-chip
memory. An on-chip SRAM is equipped to capture data reuse.

A. Spikes Compression

We first discuss how sparse input spikes (matrix A) across
timesteps are compressed in LoAS. Efficiently compressing
matrix A in SNNs necessitates solving two challenges:

How to maximize the compression ratio of 1-bit spikes?
Assume that the input spike matrix A has a size of 128×128
for each timestep. Then for either CSR or CSC, we need to use
two 7-bit coordinates to compress each 1-bit non-zero spike.5

Furthermore, SNNs naturally run for multiple timesteps, which
means that for the same coordinate, different spike values may
occur at different timesteps (e.g., 0 for T=1&3, and 1 for
T=2&4). To faithfully capture all the non-zero spikes, we need
separate coordinate values for each timestep.

How to maintain contiguous memory access of non-zero
spikes across timesteps? The FTP dataflow we proposed in
Section III requires spatial unrolling of the input spike matrix
A across all timesteps beneath the k dimension. Consequently,
a dis-contiguous memory layout of A along the t dimension
will cause fragmented memory access at all levels of memory
hierarchies, leading to higher data movement costs.

To better illustrate these two points, we provide an example
in Figure 8. Envisioning that the input spikes sent to the
system have the pre-synaptic neuron a0,0 (first element of row-
0 in matrix A) firing a spike at t0 and t2. As shown in step
1 , to represent this pre-synaptic neuron behavior, a single-

bit 1 needs to be stored at row-0, column-0 of matrix A for
both timestep 0 and 2 into the memory, shown in the box of
’unpacked real data.’ Then, for each non-zero spike in row-0
of matrix A for each timestep, if we need to use a coordinate
value (e.g., 4-bit for CSR) to record its position. We then need
2× 4 = 8 bits to compress 2 bits (2 spikes). The compression
efficiency in this case is only 25%. Furthermore, memory
access to spikes across different timesteps is discontinuous
(sequentially access different rows of A). We propose the
following spikes compression format for LoAS to solve these

5For 128 columns, we need log2(128) = 7 bits for coordinates. We neglect
the offsets in the discussion, which will further increase the number of bits
used for coordinates.

6



two challenges. In our method, as shown in step 2 , we pack
all the spikes (both 0 and 1) across all timesteps into one
continuous data block in the system for each pre-synaptic
neuron. In the example of Figure 8, we store a 4-bit value
1010 at the first position of row-0 of matrix A for a0,0 and
0111 at the fourth position for a0,3. Since neurons a0,1 and
a0,2 do not spike at any timestep, their packed value would be
0000 (shown in the box of ’packed real data’). We define these
neurons as silent neurons.6 With this strategy, only the non-
silent neurons will be treated as non-zero values and stored in
the memory for matrix A, as shown in step 3 . In our example,
we end up using 4 bits to compress 5 bits. The compression
efficiency in this case is 125%.

To accommodate our FTP dataflow, we compress the input
spike matrix A in a row-wise manner and use the bitmask
format [9], [15], [42] to represent the coordinates of the non-
zero values. The bitmask format uses a 1-bit coordinate value
for each position in the row. In our example, the bitmask is
1001 since the first and the fourth elements in the row are
non-zero. The second and third elements are silent neurons,
so we do not store them in the memory (represented by a 0 in
bitmask). Following the bitmask, a pointer is stored to provide
the starting location of the non-zero values of the row. We call
this compressed row: a fiber [34], [62].

The key to our compression method is the ratio of silent
neurons in the SNN. Fortunately, empirical studies have
shown that SNNs have a significant fraction of silent neurons
(60% ∼ 70%, as shown in Table II). We further use a similar
bitmask-based technique to compress weights in a column-
wise manner. Each compressed weight column is also called
a fiber.

B. Temporal Parallel Processing Elements

The fundamental building blocks of LoAS’s compute en-
gine are Temporal Parallel Processing Elements (TPPEs) and
Parallel Leaky-Integrate-Fire units (P-LIFs), which we de-
scribe next. Figure 7 also details the design of TPPE. Each
TPPE produces the full sum for one output neuron across all
timesteps (Line 5 in Algorithm. 1). Before the computation
starts, the bitmask (bm-B) of a fiber from weight matrix B
(fiber-B) and its non-zero data are read from SRAM and
broadcasted into the small bitmask buffers (128 bits in our
design) inside each TPPE. The bitmask (bm-A) of fiber from
input spike matrix A (fiber-A) is also fetched and sent to
the TPPEs. Each TPPE will hold the bitmask for a distinct
fiber along the row of A. After the data are loaded, an inner-
join operation [9], [15], [18] is performed between the two
bitmasks. Depending upon the inner-join result, the matched
non-zero data of fiber-A will be fetched from the global cache
and sent to the pseudo-accumulator (soon be discussed) to
perform the accumulation (AC) operation. After the TPPE
completes the full computation of one output neuron, it will
send the result to the P-LIF unit to generate output spikes for
all timesteps in one shot.

6We follow the same terminology used in [29].

…

…

U

Prefix-Sum

Priority
Encoder

Bitmask A Bitmask B

&

&

… AND 
result Offset of fiber-B

To Fetcher

From Bitmask Buffer

To Bitmask Buffer B

Match
Position

++…++
…
Offset of fiber-A

From Bitmask Buffer B

M
at

ch
 P

os
iti

on

To Data fiber-A

tBitmask A

Process
time

Fast prefix-sum circuitLaggy prefix-sum circuit
Fig. 9. Illustration of the proposed FTP-friendly inner join unit.

C. Inner-join Unit

The inner-join operation has been extensively studied by
prior works [9], [15], [18] for spMspM acceleration in ANNs.
The inner-join mechanism with prefix-sum circuit has been
efficiently implemented with the bitmask representation [15].
In [15], a logical-AND operation is first applied to two
bitmasks to get the AND-result, which represents the location
where both data are nonzero. The AND-result is then sent to a
priority encoder to convert the matched positions into integer
values. The matched positios are sent to two separate prefix-
sum circuits to get the number of 1s in front of the matched
position for each bitmask. This gets the offsets for each non-
zero data in the memory.

During the above process, the use of two fast prefix-sum
circuits is an expensive operation (taking more than 45%
power and area in [15]).7 To reduce the overhead brought by
the prefix-sum circuits, we propose an FTP-friendly inner-join
unit that is detailed in Figure 9.

We first observe that in ANNs, the MAC operation requires
both inputs to be explicitly known at computation time.
Therefore, we need two fast prefix-sum circuits to match the
processing speed between two inputs. However, this is not the
case with SNNs. In SNNs, we only have two cases for the
input (1 or 0), meaning we either accumulate or discard the
weight. This provides the opportunity to have an imbalanced
processing speed for two inputs at the prefix-sum stage.

In our design, instead of using two fast prefix-sum circuits as
in ANNs, we have one fast and one laggy prefix-sum circuit,
as shown in Figure 9. Recall that our compression method
only fetches the non-silent neurons (that fire at least once
across timesteps) from DRAM for A. Thus, as soon as we find
a matched position in AND-result, we are confident that the
corresponding non-zero value in fiber-B will be accumulated
at least once (at least one timestep). Therefore, we can begin
accumulating the non-zero value in fiber-B without knowing
the exact spike information from fiber-A. In this way, we can
ensure the throughput of consuming fiber-B is always high
regardless of the processing speed of fiber-A.

In our efficient inner-join unit, each time the fast prefix-
sum circuit generates an offset, the corresponding non-zero
value of fiber-B will be directly sent to a pseudo-accumulator
for accumulation. This mechanism opportunistically presumes

7In [15], the design of the prefix-sum circuit is not described. We assume
it to be a tree-like prefix-sum circuit with O(log(n)) complexity that can run
in one clock cycle. n is the size of input and output for the prefix-sum circuit,
which is set to 128 in both [15] and our work.

7



the matched non-zero value of fiber-A is all 1s (pre-synaptic
neuron fires at all timesteps) to fully leverage the throughput
of the fast prefix-sum circuit. Since the non-zero value in
fiber-A is not always all 1s, we need a mechanism to ensure
that the accumulation results are correct. Instead of using
the expensive fast prefix-sum circuit to access and check the
matched non-zero value in fiber-A, we use a much simpler
circuit to generate the offset of fiber-A. We defined the simpler
prefix-sum circuit as the laggy prefix-sum circuit, illustrated on
the left of Figure 9. We use a group of adders to sequentially
add up the prefix-sum results and store them inside a small
buffer. These adders run in parallel, and hence, the latency of
generating all the offsets is equal to len(bm-A)/# of adders.

!! !"

TPPE

00101
AND-resultbm-B

bm-A
10101
01101

!!
!!

+

Pseudo-Acc

FIFO-B

Laggy Prefix-sum

not ready

Fast Prefix-sum

2
FIFO-mp

cycle1

!#fiber-Bfiber-A

ready

Matched: [2,4]

2

!"
!"

+

Pseudo-Acc

not ready

4

cycle2

ready4

2
!! !"

+

Pseudo-Acc

ready

4

cycle4

gated

2
!!

new fetch

11111011 1010

"# "! ""
1111"!

predict correct

discard

+

Pseudo-Acc

ready

cycle5

gated

4
!"

1010""
predict wrong

loading

+

Correction-Accs

+++

	$# 	$! 	$$ 	$"

!" !"

…
Efficient Inner-join scheme in LoAS

Fig. 10. A walk-through example of the proposed FTP-friendly inner-join
unit. This example assumes the laggy prefix-sum circuit will be ready after 2
cycles. FIFO-mp is the FIFO to buffer the matched position. FIFO-B is the
FIFO to buffer the matched non-zero value of B. Acc stands for accumulator.

We provide a simple walk-through example in Figure10.
We first run the fast prefix-sum circuit; in every cycle, we
accumulate the matched non-zero value of fiber B and buffer
it together with the matched position in small FIFOs. When the
laggy prefix-sum circuit finishes running, a ready signal is sent
out. We then check the non-zero value in fiber-A according
to the buffered position from FIFO-mp. If the matched value
is all 1s, we simply discard the current value in FIFO-B.
Otherwise, we need to send the buffered non-zero values of
fiber-B from the FIFO-B to the correction accumulators. As
illustrated in Figure 10, at cycle 4, we check a2 and find its
value is 1111. Thus, we simply discard b2. At cycle 5, we
check a4 and find its value is 1010. Thus, we send b4 to
the correction accumulator for t1 and t3. This example shows
the motivation and benefits of using a combination of fast
and laggy prefix sums. By having a fast prefix sum, we can
consume B at the earliest possible by first accumulating it into
the pseudo-accumulator. While waiting for the laggy prefix
sum to correct the accumulation results, we can proceed to
fetch the next fiber-B’s data into the buffer. This way, the
latency of fetching fiber B can be overlapped with the laggy
prefix sum and correction to improve the overall throughput.
At the same time, replacing one fast prefix sum with a laggy
one saves the overall power and area of our TPPE.

D. Other Units

After the computation of the pseudo-accumulator com-
pletes, its accumulation results are duplicated and sent to
each correction accumulator. The correction value inside each
accumulator will be subtracted from the pseudo accumulation
results for each timestep. Finally, we send the corrected results
to the P-LIF units to generate the output spikes. As shown
inside the purple box in Figure 7, we spatially unroll the LIF
operations so that the output spikes for all timesteps will be
generated at once.

LoAS uses a unified global buffer for holding compressed
fiber-A and fiber-B with their bitmask representations. We
adopt a FiberCache design [62]. A unified shared cache
exhibits better utilization compared to separate ones. Each line
in the global cache consists of two parts. The first part is
the bitmask representation of a fiber, followed by a pointer.
The second part is the non-zero values of that fiber. If the
line manages to hold all the non-zero values, the pointer will
be a NULL pointer. Otherwise, it will point to the location
of the line where the rest of the data are held. Each PE
will take responsibility for generating one output neuron.
Therefore, we use a highly banked global cache to ensure
multiple PEs can access their data concurrently. Inside each
bank, we fetch as many chunks as possible for one fiber in
matrix A and hold them as long as possible to maximally
have the data reuse of A. This can be achieved by adopting
a replacement policy for the global cache as in [31], [62].
Only one compressed row fiber of matrix B is fetched into
the global cache and broadcasted to all TPPEs. We follow
a compression unit as [15], where an inverted prefix-sum
circuit is used to compress the output spikes and generate their
bitmask representations. Similar to the observation in [15], this
compression step does need to be performed fast. Therefore,
we equip an inverted laggy prefix-sum circuit to perform the
compression. The scheduler will be responsible for casting
the data to each TPPE through a simple swizzle-switch-based
crossbar [47].

V. EXPERIMENTAL METHODOLOGY

Software Configuration: For the dual-sparse SNNs, we
train and compress the AlexNet [26], VGG16 [50], and
ResNet19 [17]. We use the open-source toolchains for lottery-
ticket-hypothesis (LTH)-based SNN pruning [13], [22]. We set
the default timesteps T to 4 across all experiments. We use 15
rounds of LTH searching, and all SNNs are trained towards
convergence with similar accuracy as state-of-the-art dense
baselines [22]. We further select representative layers from
each network to provide single-layer insights. The summary
of the workloads is in Table II. We further use a simple yet
effective preprocessing technique: zeroing out all presynaptic
neurons that have a low firing activity to further improve
the number of silent neurons. We take the trained SNN and
mask the neurons with only one output spike throughout all
timesteps. We find that with a very small number of fine-tuning
(<5 epochs), the accuracy can be fully recovered, as shown in

8



TABLE II
SNN WORKLOADS. NL = # OF LAYERS. T = TIMESTEPS. AVSP{A, B} =
AVERAGE SPARSITY OF THE MATRICES{A, B} IN(%). AVSPA-ORIGIN IS
THE ORIGINAL SPIKE SPARSITY ACROSS TIMESTEPS, AVSPA-PACKED IS

THE DENSITY OF SILENT NEURONS, AND AVSPA-PACKED+FT IS THE
DENSITY AFTER FINE-TUNED PREPROCESSING. M/N/K DENOTES MATRIX

SHAPE.

SNN NL T AvSpA AvSpA AvSpB
origin packed(+FT)

AlexNet(A) 7 4 81.2 71.3(76.7) 98.2
VGG16(V) 14 4 82.3 74.1(79.6) 98.2
ResNet19(R) 19 4 68.6 59.6(66.1) 96.8

Layer T,M,N,K

A-L4 4,64,256,3456 75.8 63.2(69.7) 98.9
V-L8 4,16,512,2304 88.1 76.5(86.8) 96.8
R-L19 4,16,512,2304 57.9 51.4(55.7) 99.1
T-HFF 4,784,3072,3072 - - (86.8) 96.8

Figure 11. Please note that this preprocessing technique aims
to maintain the accuracy of the original workload instead of
improving it. During hardware execution, the compressor will
discard the output neurons that have 0 or only 1 output spike.
From Table II, we see that preprocessing effectively creates
up to 1.1× more silent neurons8.

Origin Mask FT-e1 FT-e5 FT-e10

ResNet19
VGG16

Fig. 11. Accuracy trends of the fine-tuned preprocessing. Mask means
masking out all presynaptic neurons that fire only once during the inference.
FT-ex means fine-tuning for x epochs.

Hardware Configuration: We evaluate LoAS with the
configuration in Table III. In our experiments, we configure
the LoAS to support SNNs running with 4 timesteps. We
use 16 TPPEs, each with 5 accumulators (1 12-bit pseudo-
accumulator and 4 10-bit correction accumulators) and 1 inner-
join unit. Inside each inner-join unit, there is 1 fast prefix-sum
circuit and 1 laggy prefix-sum circuit. The fast prefix-sum
circuit can generate the offsets in a single cycle. The laggy
prefix-sum circuit contains 16 adders and a 128-bit buffer. It
generates the offset results in 8 cycles. The TPPE also has 2
depth-8 FIFOs (for correction purposes) and 2 128-bit buffers
(for holding bitmasks). Finally, a 128-byte buffer is equipped
inside the TPPE to hold the non-zero weights from fiber−B.
We allocate 256 KB (double-buffered) for the global cache.
For our workloads, this memory size is enough to capture
good on-chip data reuse and keep all TPPEs busy.

Baseline: As discussed previously, there are currently very
limited spMspM accelerators available for dual-sparse SNNs.
As a result, we construct our baselines in the following way,
We first pick three popular ANN spMspM accelerators that
use IP, OP, and Gust dataflow: SparTen [15], GoSPA [9],
and Gamma [62]. We then envision that a dual-sparse SNN

8The source codes can be found at https://github.com/RuokaiYin/LoAS

TABLE III
CONFIGURATION OF THE LOAS SYSTEM.

TPPEs 16 TPPEs, 8-bit weight
Inner-join unit 16 Inner-join units
Global cache 256 KB, 16 banks, 16-way associative
Crossbars 16× 16 and 16× 16, swizzle-switch based
Main memory 128 GB/s over 16 64-bit HBM channels

(with 4 timesteps and 8-bit weights) is naively running (se-
quentially processing its timesteps) on these accelerators. To
be conservative, we place the t dimension at the innermost
loop of the original IP, OP, and Gust dataflow.9 We then
make essential simplifications for the two accelerators. For
example, we remove the multipliers in these designs. To make
a fair comparison, we configure all designs to have 16 PEs
and the same global SRAM size. We call these three baselines
SparTen-SNN, GoSPA-SNN, and Gamma-SNN.

We implement the key components of LoAS and our hard-
ware baselines in RTL and synthesize them using Synopsys
DC compiler at 800MHz with 32 nm technology. A 128
GB/s High-Bandwidth Memory (HBM) module is connected
to LoAS as the off-chip memory. We use CACTI 7.0 [35]
to model the memory components. We built a simulator in
Python to model the cycle-level behavior of LoAS and the
baselines by tiling the loop and mapping it to hardware.

VI. EXPERIMENTAL RESULTS

A. Hardware Evaluation

Overall Performances: Figure 12 compares the perfor-
mance between three dual-sparse SNN accelerator baselines
(SparTen-SNN, GoSPA-SNN, and Gamma-SNN) and LoAS
(with and without fine-tuned preprocessing) on three SNNs
(speedup w.r.t the cycle numbers of the SparTen-SNN).

The first observation is that LoAS significantly outperforms
the other three accelerator baselines in all cases, obtaining
average speed-ups of 6.79× (vs. SparTen-SNN), 5.99× (vs.
GoSPA-SNN), and 3.25× (vs. Gamma-SNN). This is due
to LoAS leverages FTP dataflow. The FTP dataflow com-
pletely unleashes LoAS from the intra-PE latency penalty of
sequentially running the timesteps. It also enables LoAS to
invoke less on-chip and off-chip data communications across
timesteps. The second observation is that LoAS’s performance
gain is highly correlated with the sparsity of matrix A. This
relationship is expected since our workloads are extremely
sparse on matrix B; thus, the overall computation is matrix-A-
bounded. Consequentially, the performance of two baselines
suffers more from sequentially running timesteps through
matrix A with less sparsity. However, LoAS will not get this
sequentially running penalty. As a result, LoAS achieves from
4.08× speedup (vs. SparTen-SNN) on VGG16 (highest matrix
A sparsity) to 8.51× speedup (vs. SparTen-SNN) on ResNet19
(lowest matrix A sparsity). Finally, we observe that with the
help of pre-processing (removing the neurons that only spike
one time), LoAS further improves the performance by 20% on
average. This is because the pre-processing technique helps to

9Adding the t dimension anywhere else will bring more data traffic, thus
worsening the performance.

9

https://github.com/RuokaiYin/LoAS


Fig. 12. Performance and efficiency comparison between SparTen-SNN,
GoSPA-SNN, Gamma-SNN, and LoAS (with and without fine-tuned (FT)
pre-processed) architectures across three SNN workloads. All numbers are
normalized to that of the SparTen-SNN baseline.

198.7 407

Fig. 13. Off-chip traffic (KB) and on-chip memory traffic (MB) for
SparTen-SNN, GoSPA-SNN, Gamma-SNN, and LoAS (with and without pre-
processed) architectures across three SNN workloads.

increase the density of silent neurons (Section IV-A), which
LoAS is able to completely avoid the data communications and
computations. Figure 12 also compares the energy efficiency
of LoAS and three baselines on different SNN workloads. It
is observed that LoAS (with preprocessing) achieves (3.68×,
3.09×, 2.40×), (3.17×, 1.50×, 2.33×), and (3.54×, 1.34×,
2.47×) higher energy efficiency over (SparTen-SNN, GoSPA-
SNN, and Gamma-SNN) on Alexnet, VGG16, and ResNet19.

Detailed Analysis: We next explain the performance gains of
LoAS. Owing to the FTP dataflow, LoAS has much less on-
chip and off-chip memory traffic than the two baselines. As
shown in Figure 13, compared to SparTen-SNN (IP), LoAS
has 3.93×(3.70×), 3.57×(2.22×), and 4.07×(2.24×) less on-
chip SRAM (off-chip DRAM) access on Alexnet, VGG16,
and ResNet19, respectively. This behavior is expected since
IP dataflow design like SparTen is known for having poor

Weight Input Psum Other
Normalized

SRAM miss rate

16x 4x

Fig. 14. Normalized Off-chip traffic with breakup for SparTen-SNN, GoSPA-
SNN, Gamma-SNN, and LoAS (with pre-processed) architectures across
three SNN layer workloads. The normalized SRAM cache miss rate is also
provided for the ResNet19 layer workload. All numbers are normalized to
that of LoAS.

input data reuse. This inefficient input data reuse pattern is
exacerbated by the extra temporal dimension (t-dim) in SNN
workloads. While FTP dataflow is a variant of inner-product,
it does not incur any extra executions on the t-dim since it
parallelizes the t-dim at the inner-most loop.

Not surprisingly, compared to GoSPA-SNN (OP), LoAS still
achieves 2.87×(4.49×), 2.19×(2.78×), and 2.98×(3.03×)
less on-chip SRAM (off-chip DRAM) access on Alexnet,
VGG16, and ResNet19, respectively. This behavior is also
expected even though OP dataflow design is known to have
excellent input data reuse (on average, GoSPA-SNN has 1.45×
less SRAM traffic than SparTen-SNN). The inefficiency for
GoSPA-SNN comes from the partial sum (psum) matrices.
Because of the extra t-dim in SNNs, the size of psum
matrices expands with the number of timesteps. GoSPA’s
design allocates a small on-chip memory for the psum. The
psum matrices that cannot fit on-chip must be written to off-
chip DRAM and read back later for reduction. This incurs
significant off-chip memory traffic.

Finally, compared to Gamma-SNN (Gust), LoAS is able to
achieve 2.16×, 1.76×, and 1.91× less DRAM accesses. This
result is aligned with Gust dataflow’s ability to reduce off-
chip partial row accesses through on-chip SRAM and merg-
ers. While reducing the DRAM accesses, Gamma’s SRAM
accesses are exacerbated by the t-dim in SNNs. This ends up
with on average 13.4× more SRAM traffic than LoAS.

To better visualize the aforementioned analysis, we provide
a memory traffic breakup in Figure 14 for the three SNN
layers in Table II. As shown in the figure, SparTen-SNN has
the largest input off-chip traffic, and GoSPA-SNN has the
largest psum off-chip traffic across all workloads. Among the
three baselines, Gamma-SNN has the smallest off-chip traffic
footprint due to Gust dataflow’s on-chip reuse of partial rows.
GoSPA-SNN has the largest off-chip traffic for compressed
format due to its CSR format for each spike. We notice that
LoAS has slightly larger (2.1×) off-chip traffic for compressed
format compared to SparTen-SNN. This is because we need
extra bitmasks to mark the position of non-silent neurons,
while in SparTen-SNN, we can directly leverage the input
spike trains. Nevertheless, this overhead is negligible com-

10



TABLE IV
AREA AND POWER BREAKDOWN OF LOAS (LEFT) AND ONE TPPE

(RIGHT).
Components Area (mm2) Power (mW) TPPE units Area Power

16 TPPEs 0.96 45.1 Accumulators 2e-3 0.16
16 PLIFs 0.02 1.2 Fast Prefix 0.04 1.46
Global cache 0.80 124.5 Laggy Prefix 5e-3 0.32
Others 0.30 18.1 Others 0.01 0.88

Total 2.08 188.9 TPPE total 0.06 2.82

Global Cache 
65.9% TPPEs

23.9%

Others
10.2%

Fast Prefix-Sum
51.8%

Laggy Prefix-Sum
11.4%

Others
31.2%

Accs
5.6%

Fig. 15. On-chip power breakup of LoAS. Accs stands for the accumulators,
which include 1 pseudo-accumulator and 4 correction-accumulators.

pared to LoAS’s saving on off-chip traffic for other quantities.
Figure 14 also provides the normalized SRAM cache miss
rate for the layer workload in ResNet19. SparTen-SNN has
a 16× higher miss rate(1.47%) compared to LoAS. GoSPA-
SNN has the lowest miss rate due to its Output-stationary
dataflow. However, the tradeoff is the higher off-chip traffic
of psums. Gamma-SNN has a higher SRAM miss rate than
GoSPA-SNN and LoAS. The reason is that the extra t-dim
enlarges the partial row traffic by t times. Some of the extra
traffic cannot be held in the on-chip SRAM, thus leading
to the cache eviction. Overall, the cache miss rate results
align with the off-chip traffic trends. Since we set all the
baselines to have the same global cache size, the reduction
in the memory traffic reflects LoAS’s improvement in both
speedup and energy efficiency.

Area and Power:Table IV shows the area and power break-
down of LoAS with the configuration in Table III. Inside
each TPPE, one single fast prefix-sum circuit dominates both
the area (66.7%) and power (51.8%). Original SparTen [15]
even requires two fast prefix-sum circuits for both inputs and
weights.10 Thanks to the laggy prefix-sum circuits (8.3% of
area and 11.4% of power) we proposed, LoAS only requires
one fast prefix-sum circuit inside each TPPE. At the system
level, the global SRAM cache dominates both the power and
area, which aligns with the previous works [31], [34], [62].
Figure 15 provides a visualization of the power breakup.

B. Ablation Studies

Temporal Scalability Studies: In our experimental settings,
we configured the TPPE inside LoAS to run the SNNs with
4 timesteps. Most state-of-the-art SNN algorithms [10], [12]
usually use a timestep equal to or less than 8. So, we want to
understand how TPPE scales with the timesteps. Figure 16(a)
shows that TPPE scales well with the timesteps. The reason

10This is not the case in SparTen-SNN. Since the input spikes are bitmasks
and data at the same time, thus SparTen-SNN only requires one fast prefix-
sum circuit.

T=4 T=8 T=16 T=4 T=8 T=16

12.5%
22.2% 36.3%

8.4%15.5%
26.8%

(a) (b)

origin FT

Fig. 16. (a) The scalability of TPPE with increasing timesteps. The yellow
region denotes the portion that grows with the timesteps. (b) The scalability
of the ratio of silent neurons (sparsity of matrix A) with increasing timesteps.
All values are normalized to the original silent neuron ratio at the timestep
of 4.

Fig. 17. Scalability of LoAS across different sparsity patterns of matrix B,
number of timesteps, and layer size.

is that all TPPE components other than accumulators and the
input data buffer are agnostic to the number of timesteps. Even
at 16 timesteps, the TPPE only increases its area (power) by
1.37× (1.25×) compared to 4 timesteps. We also showcase
how the ratio of silent neurons in VGG16 scales with the
number of timesteps. Figure 16(b) shows that with the help
of the pre-processing technique, even at the timestep of 8, we
can still have a similar ratio of silent neurons as the timestep
of 4. However, it is very likely to have fewer silent neurons
when we have even larger timesteps (> 8). This is one of the
challenge that LoAS needs to face when scaling up on the
number of timesteps.

Scalability Study: Figure 17 further shows how the overall
performance of LoAS scales with different quantities. We
first test LoAS running on VGG16 with average sparsity of
B (weight) at 98.2%(High), 68.4(Medium), and 25%(Low).
The result shows that LoAS’s performance is highly sensitive
to the sparsity level of B. When we scale the sparsity from
98.2% to 25%, the performance scales down by roughly 88%.
We also find that LoAS’s performance scales pretty well
on timesteps. LoAS only loses roughly 14% of performance
when increasing the number of timesteps by 2×. Finally, we
test LoAS’s scalability on layer size. We compare one layer
from VGG16 and the hidden feed-forward (HFF) layer from
SpikeTransformer [58]. The results show that LoAS scales
pretty well, even on the layer with a larger parameter size.

Dual-sparse SNN vs. Dual-sparse ANN: In this work,
we focus on providing insights for the community on how
the spMspM acceleration works on SNNs. However, it is
unavoidable to discuss the comparison between SNNs and
ANNs. In Figure 18, we show the comparison of normalized
energy efficiency and memory traffic between SNNs (LoAS)

11



61
.7
% 60

.2
% 63
.4
%

comp

Fig. 18. Normalized energy efficiency and memory traffic between SNNs
(LoAS., T=4) vs. ANN baselines (SparTen, Gamma).

and ANNs (SparTen [15]) and Gamma [62] running VGG16
workload. We use the VGG16 workload in Table II for LoAS.
ANN-version of VGG16 has 8-bit weights (98.2% sparsity)
and activations (43.9% sparsity). Overall, the SNN running on
LoAS has roughly 2.5× and 1.2× energy efficiency compared
to the ANNs running on SparTen and Gamma, respectively.
We observe that around 60% of energy contributes to the data
movement for both networks. We, therefore, also include the
DRAM and SRAM traffic comparison in Figure 18. It shows
that SNNs, on average, have ∼ 60% less memory traffic
compared to SparTen-ANN. The less memory traffic comes
from less input bitwidth (4-bit vs. 8-bit) and higher input
sparsity (79.6% vs. 43.9%), thanks to SNN’s features of unary
activation and sparse spike activity (II-B). Not surprisingly,
Gamma-ANN has lower overall DRAM accesses compared to
LoAS due to its Gust dataflow [62]. The tradeoff is 3.5× more
SRAM traffic, which explains why the LoAS has a slightly
higher overall energy efficiency.

Dual-sparse SNN vs. Dense SNN: To show the benefits of
dual-sparsity in SNNs, we compare LoAS with the prior dense
SNN systolic-array accelerators, PTB [29] and Stellar [33],
running dense VGG16 with 4 timesteps. For a fair comparison,
we set the array size for PTB to be 16 × 4, which generates
16 full-sum outputs for 4 timesteps in parallel (same as
LoAS). We further configure Stellar to the same array size.
We leverage ScaleSim [44] to estimate both baselines’ memory
traffic and cycle counts. We show the comparison in Figure 19.
We first observe that LoAS has roughly 6× higher energy
efficiency compared to PTB, mainly resulting from the 3×
(12.5×) less DRAM (SRAM) traffic. Compared to Stellar,
LoAS has roughly 2.5× higher energy efficiency, as well as the
2.7× (6.6×) less DRAM (SRAM) traffic. We also observe that
LoAS has 46.9× speedup against PTB. This is primarily due to
the data sparsity and the difference between PTB’s partially
temporal parallel (Section II-E) and LoAS’s fully temporal
parallel mechanism. We observe that Stellar outperforms PTB
across all matrices. This is mainly due to Stellar’s optimized
spatiotemporal row-stationary dataflow and its spike-skipping
technique. However, compared to Stellar, we are still able to
achieve roughly 7.1× speedup due to LoAS’s capability to
leverage the dual-sparsity. Please note that we do not compare
with the SpinalFlow [36] due to its temporal encoding achieves

46.9x

Fig. 19. Normalized performance comparison between dual-sparse SNN
accelerator (LoAS) vs. dense SNN accelerator baselines (PTB, Stellar).

limited accuracy on challenging learning tasks [6], [29].

VII. RELATED WORK

Except for the prior SNN dense accelerator works we
discussed in Section II-E, there also exists prior works that
try to leverage the sparsity in SNNs. In [3], a neuron filter
unit is leveraged to only fetch the weight if there is a 1-spike.
However, dual-sparsity (both spike and weight sparsity) is not
considered. In [2], the dual-sparsity of SNN is considered to
skip the unmatched computation. However, the weights and
spikes are fetched in a dense format without any compression
from the off-chip memory, thus failing to save data movement
costs. In this work, LoAS leverages the dual-sparsity in SNNs
from both computation and data movement.

As we discussed, PTB processes the timesteps in a partially
parallel manner. Even if one re-configures the PTB to run
all timesteps in parallel (time-window=1), it still differs from
LoAS in the loop ordering. In PTB’s loop ordering, t-dim is
placed between m-dim and n-dim, while LoAS places the
t-dim in the inner-most loop. As discussed in Section III,
LoAS’s loop ordering brings more efficiency in spMspM
operation. Moreover, PTB targets accelerating workloads with
time-series data from DVS sensors [30], where the timestep is
usually large (> 100). On our workloads, where the timesteps
are small (< 8), PTB experiences low hardware utilization.
In [32], processing timesteps in parallel is also studied.
However, they target the temporal-coded SNN workloads, and
the loop ordering is not discussed. Finally, as discussed in
Section II-E, Stellar [33] is another work that also tries to
process timesteps in parallel. However, it targets the non-LIF,
FS-coded SNNs and does not support the dual-sparsity.

VIII. CONCLUSION

In this work, we observe that naively running dual-sparse
SNNs on existing spMspM accelerators exhibits sub-optimal
efficiency due to the latency and memory traffic penalty
brought by processing timesteps. To improve the efficiency,
we propose a fully temporal-parallel dataflow (FTP), which
avoids the above problems. To maximize the benefits of
FTP, we propose FTP-friendly spike compression and inner-
join mechanism. We also build LoAS, a novel architecture
that exemplifies the FTP dataflow. With the help of both
FTP-friendly compression and inner-join, LoAS demonstrates
significant speedup (up to 8.51×) and energy reduction (up to
3.68×) compared to prior dual-sparse accelerator baselines.

12



REFERENCES

[1] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 34, no. 10, pp.
1537–1557, 2015.

[2] Q. Chen, C. Gao, and Y. Fu, “Cerebron: a reconfigurable architecture
for spatiotemporal sparse spiking neural networks,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp.
1425–1437, 2022.

[3] Q. Chen, G. He, X. Wang, J. Xu, S. Shen, H. Chen, Y. Fu, and L. Li,
“A 67.5 µj/prediction accelerator for spiking neural networks in image
segmentation,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 69, no. 2, pp. 574–578, 2021.

[4] Y. Chen, Z. Yu, W. Fang, T. Huang, and Y. Tian, “Pruning of deep
spiking neural networks through gradient rewiring,” arXiv preprint
arXiv:2105.04916, 2021.

[5] D. V. Christensen et al., “2022 roadmap on neuromorphic computing
and engineering,” Neuromorphic Computing and Engineering, vol. 2,
no. 2, p. 022501, 2022.

[6] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo,
and J. Alakuijala, “Temporal coding in spiking neural networks with
alpha synaptic function,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 8529–8533.

[7] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[8] P. Dayan and L. F. Abbott, Theoretical neuroscience: computational and
mathematical modeling of neural systems. MIT press, 2005.

[9] C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan, “Gospa: an energy-
efficient high-performance globally optimized sparse convolutional neu-
ral network accelerator,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2021, pp. 1110–
1123.

[10] S. Deng, Y. Li, S. Zhang, and S. Gu, “Temporal efficient training
of spiking neural network via gradient re-weighting,” arXiv preprint
arXiv:2202.11946, 2022.

[11] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang,
H. Zhou, G. Li, and Y. Tian, “Spikingjelly: An open-source machine
learning infrastructure platform for spike-based intelligence,” Science
Advances, vol. 9, no. 40, p. eadi1480, 2023.

[12] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian,
“Deep residual learning in spiking neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 21 056–21 069, 2021.

[13] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[14] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[15] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural networks,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 151–165.

[16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[18] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 319–333.

[19] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“Ucnn: Exploiting computational reuse in deep neural networks via
weight repetition,” in 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2018, pp. 674–687.

[20] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-yolo: spiking neural
network for energy-efficient object detection,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp.
11 270–11 277.

[21] Y. Kim, J. Chough, and P. Panda, “Beyond classification: Directly train-
ing spiking neural networks for semantic segmentation,” Neuromorphic
Computing and Engineering, vol. 2, no. 4, p. 044015, 2022.

[22] Y. Kim et al., “Exploring lottery ticket hypothesis in spiking neural
networks,” in Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XII. Springer,
2022, pp. 102–120.

[23] Y. Kim, Y. Li, H. Park, Y. Venkatesha, R. Yin, and P. Panda, “Exploring
lottery ticket hypothesis in spiking neural networks,” in European
Conference on Computer Vision. Springer, 2022, pp. 102–120.

[24] Y. Kim and P. Panda, “Revisiting batch normalization for training
low-latency deep spiking neural networks from scratch,” Frontiers in
neuroscience, 2021.

[25] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha, and
P. Panda, “Rate coding or direct coding: Which one is better for accurate,
robust, and energy-efficient spiking neural networks?” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 71–75.

[26] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” NeurIPS, 2012.

[27] H.-T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp.
37–46, 1982.

[28] C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and K. Roy,
“Spike-flownet: event-based optical flow estimation with energy-efficient
hybrid neural networks,” in European Conference on Computer Vision.
Springer, 2020, pp. 366–382.

[29] J.-J. Lee, W. Zhang, and P. Li, “Parallel time batching: Systolic-
array acceleration of sparse spiking neural computation,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022, pp. 317–330.

[30] H. Li et al., “Cifar10-dvs: an event-stream dataset for object classifica-
tion,” Frontiers in neuroscience, vol. 11, p. 309, 2017.

[31] Z. Li, J. Li, T. Chen, D. Niu, H. Zheng, Y. Xie, and M. Gao, “Spada:
Accelerating sparse matrix multiplication with adaptive dataflow,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
2023, pp. 747–761.

[32] F. Liu, W. Zhao, Z. Wang, Y. Chen, T. Yang, Z. He, X. Yang, and
L. Jiang, “Sato: spiking neural network acceleration via temporal-
oriented dataflow and architecture,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 1105–1110.

[33] R. Mao, L. Tang, X. Yuan, Y. Liu, and J. Zhou, “Stellar: Energy-
efficient and low-latency snn algorithm and hardware co-design with
spatiotemporal computation,” in 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2024,
pp. 172–185.

[34] F. Muñoz-Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E. Aca-
cio, and T. Krishna, “Flexagon: A multi-dataflow sparse-sparse matrix
multiplication accelerator for efficient dnn processing,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
252–265.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, 2009.

[36] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and P.-
E. Gaillardon, “Spinalflow: An architecture and dataflow tailored for
spiking neural networks,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 349–
362.

[37] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51–63, 2019.

[38] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwen-
berghs, “Stochastic synapses enable efficient brain-inspired learning
machines,” Frontiers in neuroscience, vol. 10, p. 241, 2016.

[39] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:
An outer product based sparse matrix multiplication accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 724–736.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An

13



accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 45, no. 2, pp. 27–40, 2017.

[41] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 45, no. 2, pp. 27–40, 2017.

[42] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[43] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, 2019.

[44] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
dnn accelerators using scale-sim,” in 2020 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). IEEE,
2020, pp. 58–68.

[45] A. Sarma, S. Singh, H. Jiang, A. Pattnaik, A. K. Mishra, V. Narayanan,
M. T. Kandemir, and C. R. Das, “Exploiting activation based gradient
output sparsity to accelerate backpropagation in cnns,” arXiv preprint
arXiv:2109.07710, 2021.

[46] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

[47] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney,
G. Blake, M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester et al.,
“Swizzle-switch networks for many-core systems,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 2,
pp. 278–294, 2012.

[48] L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen,
M. Zhao, S. Song et al., “Development of a neuromorphic computing
system,” in 2015 IEEE international electron devices meeting (IEDM).
IEEE, 2015, pp. 4–3.

[49] Y. Shi, L. Nguyen, S. Oh, X. Liu, and D. Kuzum, “A soft-pruning
method applied during training of spiking neural networks for in-
memory computing applications,” Frontiers in neuroscience, vol. 13,
p. 405, 2019.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[51] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.

[52] C. Stöckl and W. Maass, “Optimized spiking neurons can classify images
with high accuracy through temporal coding with two spikes,” Nature
Machine Intelligence, vol. 3, no. 3, pp. 230–238, 2021.

[53] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[54] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. San Miguel,
“Ugemm: Unary computing architecture for gemm applications,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 377–390.

[55] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:
An analytical approach to sparse tensor accelerator modeling,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 1377–1395.

[56] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, p. 331, 2018.

[57] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.
1311–1318.

[58] M. Yao, J. Hu, Z. Zhou, L. Yuan, Y. Tian, B. Xu, and G. Li, “Spike-
driven transformer,” Advances in neural information processing systems,
vol. 36, 2024.

[59] R. Yin et al., “Sata: Sparsity-aware training accelerator for spiking neural
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 6, pp. 1926–1938, 2022.

[60] R. Yin et al., “Workload-balanced pruning for sparse spiking neural
networks,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2024.

[61] R. Yin, Y. Li, A. Moitra, and P. Panda, “Mint: Multiplier-less integer
quantization for energy efficient spiking neural networks,” in 2024 29th
Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2024, pp. 830–835.

[62] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
687–701.

[63] W. Zhang and P. Li, “Temporal spike sequence learning via backprop-
agation for deep spiking neural networks,” NeurIPS, 2020.

[64] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

[65] H. Zheng et al., “Going deeper with directly-trained larger spiking neural
networks,” in AAAI, 2021.

14


	Introduction
	Background and Motivation
	Preliminary of SNNs 
	Leaky-Integrate-and-Fire Neuron
	Spike Encoding and SNN Training

	Distinctive Features and Challenge of SNNs
	spMspM Dataflows in SNNs
	ANN spMspM Hardware for dual-sparse SNNs
	Dataflow Architecture for SNNs

	Fully Temporal Parallel Dataflow
	LoAS
	Spikes Compression
	Temporal Parallel Processing Elements
	Inner-join Unit
	Other Units

	Experimental Methodology
	Experimental Results
	Hardware Evaluation
	Ablation Studies

	Related Work
	Conclusion
	References

