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Abstract—Spiking Neural Networks (SNNs) have gained atten-
tion for their energy-efficient machine learning capabilities, utiliz-
ing bio-inspired activation functions and sparse binary spike-data
representations. While recent SNN algorithmic advances achieve
high accuracy on large-scale computer vision tasks, their energy-
efficiency claims rely on certain impractical estimation metrics.
This work studies two hardware benchmarking platforms for
large-scale SNN inference, namely SATA and SpikeSim. SATA is
a sparsity-aware systolic-array accelerator, while SpikeSim eval-
uates SNNs implemented on In-Memory Computing (IMC) based
analog crossbars. Using these tools, we find that the actual energy-
efficiency improvements of recent SNN algorithmic works differ
significantly from their estimated values due to various hardware
bottlenecks. We identify and addresses key roadblocks to efficient
SNN deployment on hardware, including repeated computations
& data movements over timesteps, neuronal module overhead
and vulnerability of SNNs towards crossbar non-idealities.

Index Terms—Spiking Neural Networks, Systolic-arrays, In-
memory Computing, Crossbars, Energy-efficiency

I. INTRODUCTION

Spiking Neural Networks (SNNs) have garnered significant
attention as a power-efficient solution for machine learning
[1], [2]. SNNs process data over multiple time steps using
biologically inspired non-linear activation functions, such as
Leaky-integrate-and-Fire (LIF) neurons. During each time
step, input data is represented as either a spike (binary 1)
or no-spike (binary 0), creating a sparsely encoded temporal
spike-data representation. This representation potentially offers
several hardware advantages: (1) Multiplier-less Computa-
tion: SNNs use computation units that rely solely on accu-
mulators for dot-products, eliminating the need for multipliers
used in Artificial Neural Networks (ANNs) for Multiply-and-
Accumulate (MAC) operations [3], [4]. (2) Reduced On-chip
Memory: The binary nature of SNNs significantly reduces
the on-chip memory required to store intermediate layer ac-
tivations during SNN processing. These features add to the
energy-efficiency of SNN algorithms.

Fortunately, over the last few years, there have been huge
advances in the SNN training algorithms [5]–[14] leading
to state-of-the-art classification accuracy at low timesteps on
large-scale image datasets such as CIFAR10, CIFAR100, Tiny-
ImageNet and ImageNet. However, being alogrithm-focused,
the energy-efficiency claimed by these works are based on
primitive metrics such as FLOPs, timesteps and spike-data

∗Equal contribution.
This work was supported in part by CoCoSys, a JUMP2.0 center sponsored
by DARPA and SRC, the NSF CAREER Award, TII (Abu Dhabi), and the
DoE MMICC center SEA-CROGS (Award #DE-SC0023198).

TABLE I: Summary of Different Works
Work Training (T) or

Inference (I) Platform Hardware
Benchmarking

Small-scale Optimization Tasks
BrainScale [24] T & I Analog ✗

Loihi [18] I Digital ✗
TrueNorth [25] I Digital ✗

Large-scale Computer Vision Tasks
SpinalFlow [19],

PTB [20] I Digital ✗

RESPARC [21] I Analog ✗
H2Learn [22] T Digital ✗

SATA [26] T & I Digital ✓
SpikeSim [27] I Analog ✓

sparsity. Such energy evaluation is impractical as metrics
such as FLOPs do not account for hardware overheads like
memory access and data communication. Additionally, real
systolic-array [15] and In-memory Computing (IMC) [16]
accelerators are ineffective in handling the spike-data sparsity,
particularly during the memory fetches. Therefore, there is a
need for realistic SNN hardware benchmarking platforms. As
shown in Table I, there are several SNN-specific hardware
accelerators. Works such as BrainScale [17], Loihi [18] and
TrueNorth [3] are geared towards small-scale optimization
tasks for SNNs. In more recent years, there have been several
hardware co-design works [19]–[22] that cater to large-scale
SNN implementations. However, they lack several practical
considerations such as the data communication overhead, LIF
activation storage and hardware non-idealities [23].

To this end, we study two hardware accelerators SATA
and SpikeSim. Unlike prior SNN hardware platforms [19]–
[22], both SATA and SpikeSim support end-to-end hardware-
realistic benchmarking of large-scale SNNs, during inference.
SATA [26] is a sparsity-aware systolic-array based training and
inference accelerator for SNNs. While SATA evaluates SNN
workloads on a fully-digital CMOS platform, SpikeSim [27]
performs hardware-realistic accuracy, energy, latency and area
evaluation of SNN workloads on IMC analog crossbars based
on Resistive Random-access Memories (RRAMs) [28].

Table II shows the estimated and hardware-realistic (SATA
and SpikeSim implemented) energy-efficiency improvements
of state-of-the-art SNN algorithms during inference. The es-
timated energy is proportional to the product of FLOPs,
timesteps and the sparsity (as shown in footnote of Table
II). Evidently, there is a significant difference between the
estimated and hardware-realistic energy-efficiency improve-
ments. To this end, in this work, we perform realistic SNN
benchmarking on the SATA and SpikeSim platforms. With
this, we bring forth the key bottlenecks that SNNs exhibit on
hardware and propose effective mitigation strategies. Essen-
tially, we address the following key bottlenecks: (1) repeated
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TABLE II: Table showing energy comparisons for recent SNN algorithm
works using the CIFAR10 dataset. Est. Energy denotes the qualitative es-
timated energy (nJ) of the SNNs calculated using the equation specified in
the footnote. (N×) denotes the estimated or actual improvements in energy
as compared to the corresponding baselines in each work. EAC denotes the
energy expended by a single INT8 Accumulation (AC) operation. All energy
values are reported in 28 nm CMOS technology node.

Work Accuracy Sparsity T Est. Energy2 Actual Energy (nJ)
(nJ) SATA3 SpikeSim4

S-BP [5] 89.3% 90.0%1 50 11.7e4(10×) 1.1e7(4.5×) 2.3e5(5.2×)
BNTT [7] 90.3% 90.5% 20 4.2e4(20×) 0.6e7(2.8×) 0.9e5(4×)
Direct [8] 90.5% 90.0%1 10 11.7e4(20×) 3.8e7(2.3×) 2.6e5(4×)
TSSL [9] 91.4% 90.1% 5 5.8e4(80×) 3.1e7(4.9×) 1.3e5(16×)
LTH [11] 93.2% 97.5%1 5 2.7e4(15×) 5.7e7(1.3×) 2.6e5(2×)

TDBN [10] 92.9% 85.0% 4 13.3e4(83×) 5.4e7(6.8×) 2.1e5(25×)
1 We use 90% sparsity for [5], [8]. For [11], we use the weight sparsity.
2Eest = FLOPs× T imesteps× (1− Sparsity)× EAC
3 Codes are available at: https://github.com/Intelligent-Computing-Lab-Yale/SATA
4 Codes are available at: https://github.com/Intelligent-Computing-Lab-Yale/SpikeSim

memory accesses and computations over multiple timesteps,
(2) overhead of the LIF neuronal module, and (3) vulnerability
of IMC-implemented SNNs towards analog crossbar non-
idealities. This work encapsulates the above key hardware
challenges overlooked by the SNN research community, and
motivates future works aimed towards efficient hardware-
aware SNN algorithm design.

II. BACKGROUND

Spiking Neural Networks: The distinguishing feature of
SNNs lies in their utilization of a different neuronal activation
function (most commonly, LIF) for temporal signal processing,
as opposed to the ReLU activation commonly used in ANNs.
The LIF neuron i associated with a membrane potential ut

i,
that accumulates a train of spike inputs as follows:

ut
i = λut−1

i +
∑
j

wijo
t
j . (1)

Here, t stands for the timestep, wij for weight connections
between neuron i and neuron j and λ denotes the leak factor.
The LIF neuron i generates an output spike oti at the end of
timestep t if the membrane potential exceeds a threshold θ:

oti =

{
1, if ut

i > θ,

0 otherwise.
(2)

Upon firing, the membrane potential is reset to zero. The
integrate-and-fire behavior exhibited by an LIF neuron results
in a non-differentiable function, making it challenging to
employ standard backpropagation for training SNNs. To this
end, Surrogate gradient learning or Backpropagation Through
Time (BPTT) addresses the non-differentiability problem of a
LIF neuron by approximating the backward gradient function
[29] and offers a means to directly learn from spikes using
fewer timesteps. Further, BPTT can be implemented using
popular machine learning frameworks like PyTorch [30].

Further, following previous work [31], we use the direct
encoding method to encode the input tensor into spike trains
with total timesteps T . To get the final prediction, we repeat
the inference process T times (t = 1, 2, ..., T ) and average the
output from the SNN output classifier.
Systolic-array Accelerators: Systolic-array architecture is
popular among the digital von-Neumann accelerator designs
for SNNs [19], [20], [26]. With a regular and dataflow cen-
tric design, systolic-arrays can efficiently process the matrix-
matrix multiplications in parallel with high spatio-temporal
locality and compute density [32] (see Fig. 2). In this work,

we will evaluate the SATA design in two dataflow modes:
1) output-stationary (OS) mode, where the partial sums will
remain inside each Processing Engine (PE) of the array during
the dot-product operations; 2) weight-stationary (WS) mode,
where, the weights are pre-stored into the PEs of the array
before the dot-product operation starts.
Analog Crossbars: Analog crossbars comprise of a 2D ar-
ray of IMC devices, interfaced with Digital-to-Analog Con-
verters (DACs), Analog-to-Digital Converters (ADCs), and
write circuits dedicated towards programming the IMC de-
vices [16], [33], [34]. The SNN’s spike inputs are encoded
as analog voltages Vi to each row of the crossbar by the
DACs, while weights are programmed as synaptic device
conductances (Gij) at the cross-points, as shown in Fig. 1.

Fig. 1: An analog crossbar ar-
ray with input voltages Vi,
synaptic devices bearing con-
ductances Gij and output cur-
rents Ij .

For emulating dot-product opera-
tions in case of an ideal N×M
crossbar during inference, the
voltages interact with the device
conductances, resulting in a cur-
rent governed by Ohm’s Law. Fi-
nally, adhering to Kirchoff’s cur-
rent law, the net output current
sensed at each column j by the
ADCs represents the sum of cur-
rents flowing through each de-
vice, expressed as Ij(ideal) =

ΣN
i=1Gij ∗ Vi. In practical scenarios, the analog nature of

computation introduces various non-idealities, including in-
terconnect parasitic resistances and synaptic device variations
[35]–[38]. Thus in a non-ideal scenario, the net output current
sensed at each column j deviates from the ideal value Ij(ideal).
These deviations manifest as significant accuracy losses for
SNNs on crossbars [23].

III. TOOLS FOR BENCHMARKING SNNS ON HARDWARE

A. SATA: A Systolic-array Benchmarking Accelerator

SATA [26] is a sparsity-aware training accelerator de-
signed for benchmarking the state-of-the-art BPTT-based SNN
training on a fully digital von-Neumann architecture. Unlike
the prior SNN training accelerators, which have numerous
complex engines to boost performance, SATA adopts a simple
and reconfigurable systolic-array design with a three-level
memory hierarchy [39]. This makes it straightforward for
the SNN algorithm designers to deploy their workloads on
SATA and get an estimation of the hardware energy cost.
Though designed as a training accelerator, SATA can be used
to benchmark the inference performance of pre-trained SNNs
by detaching the training-related components. This work will
focus on using SATA to evaluate BPTT-trained SNNs during
inference. The architecture design of SATA for inference is
shown in Fig. 2. The analyses performed on SATA help iden-
tify some major bottlenecks, such as repetitive data movements
across timesteps, that hinder SNNs from being energy-efficient
on hardware. SATA shows that spike-data sparsity in SNNs
can only be leveraged inside the PE computation unit (that
performs weighted-accumulation and LIF operations). Outside
the computation unit, even sparse input and weight data incur

https://github.com/Intelligent-Computing-Lab-Yale/SATA
https://github.com/Intelligent-Computing-Lab-Yale/SpikeSim
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memory fetches from the on-chip buffers, adding to significant
energy overhead.
Challenges: Based on our benchmarking using SATA, we
identify two key challenges for deploying SNNs on a systolic-
array architecture. Firstly, increased timesteps bring in extra
computation and data movement costs. As shown in Fig. 4(b),
the energy costs for both PE computation and data movement
from the on-chip buffers scales with increasing timesteps.
These time-repetitive costs (specifically the data movement
cost) reduce the energy-efficiency of the deployed SNNs. A
prior work [19] has shown that the inference energy gap
between an SNN with 16 timesteps and its ANN counterpart
can be as large as 16× across various workloads on a systolic-
array architecture, due to repetitive evaluations across multiple
time-steps. The other challenge is attributed to the hardware
cost of the LIF units which are used to generate the output
spikes and store the membrane potential across timesteps.

B. SpikeSim: An IMC-based Benchamarking Accelerator

SpikeSim [27] is a IMC crossbar-based hardware evaluation
tool for benchmarking SNN inference. SpikeSim maps BPTT-
trained SNN workloads on a monolithic IMC-based weight-
stationary tiled architecture, called SpikeFlow (see Fig. 3), and
performs hardware-realistic accuracy (incorporating crossbar
non-idealities), energy, latency and area evaluations. Spike-
Flow incorporates a digital Leaky-Integrate-Fire/Integrate-Fire
(LIF/IF) neuronal activation unit to store the intermediate
membrane potentials (ut) and generate spike outputs during
SNN inference. Furthermore, the analog crossbars in the
SpikeFlow architecture are based on RRAM devices [40]. For
crossbar-realistic dot-product operations, SpikeSim emulates

the impact of RRAM device read noise and IR-drop non-
idealities due to crossbar interconnect parasitics. Another
unique characteristic of SpikeSim is a fully digital DIFF
module in the SpikeFlow architecture that eliminates the
conventional double-crossbar approach for performing signed
dot-products, thereby bringing in energy and area savings.
SpikeSim uses H-trees to communicate partial sums emerging
from the crossbars to the digital peripherals inside a tile, and an
inter-tile Network-on-Chip (NoC) architecture to communicate
spikes to and from the neuronal unit.
Challenges: Based on our benchmarking using SpikeSim, we
bring forth three key challenges to SNN inference on IMC
crossbar-based hardware. First, SNNs are highly vulnerable
on analog crossbars owing to the impact of the non-idealities
which lead to accumulation of errors in the dot-product
operations over multiple timesteps (see Fig. 6(b)). Second,
unlike ANNs that have a simple ReLU activation unit, SNNs
entail a high LIF/IF neuronal area overhead on SpikeSim.
This is due to large ut SRAM cache to store intermediate
membrane potentials of different layers of an SNN model
during inference. Third, unlike ANNs, the number of timesteps
in SNNs plays a crucial role in the hardware performance and
inference accuracy. As shown in Fig. 4(a), both the inference
energy and latency on SpikeSim scale linearly with timesteps,
similar to the trend obtained using SATA in Fig. 4(b).

IV. MITIGATION STRATEGIES

Experimental Setup: For all our experiments, we use BPTT-
trained SNNs—VGG9, VGG16 and ResNet18 models, on the
CIFAR10 and Tiny ImageNet datasets. We obtain SNN models
using code provided in [7]. Unless otherwise mentioned,
all the pre-trained SNNs have 8-bit weight-precision. SATA
[26] is calibrated in 28 nm CMOS technology node, while
SpikeSim [27] is in 65 nm CMOS technology node with
RRAM crossbars of size 64×64 in the PEs.
Dynamic Timestep Reduction: To improve the energy-
efficiency of SNNs by reducing timesteps, we analyse an
input-aware Dynamic Timestep SNN (DT-SNN) methodology
[41]. DT-SNN dynamically determines the least number of
timesteps required for a confident prediction in an input-
dependent basis during inference of a pre-trained SNN. This
is done by simply appending a digital entropy-computation
module with our SNN-based hardware accelerators (SATA or
SpikeSim). For every input, the calculated value of entropy
of the SNN’s predicted output at the end of every timestep is
compared against a predefined threshold. An early temporal
exit (termination of inference) or a prediction is carried out
if the entropy is lower than the set threshold at any given
timestep. Note, the entropy-computation module incurs negli-
gible energy overhead to the overall SNN inference energy on
SATA or SpikeSim. On SpikeSim, Fig. 4(a) shows a 10.4×
higher Energy-Delay-Product (EDP) on increasing the number
of timesteps from 1 to 4 for the inference of a standard VGG16
SNN on the Tiny ImageNet dataset. We find that DT-SNN can
reduce the overall EDP by 2.54×, while maintaining similar
inference accuracy, compared to a standard SNN inference
with 4 timesteps across all inputs. It turns out a large fraction
of the test images in the Tiny ImageNet dataset are classified

https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time
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with 1 timestep, and overall DT-SNN requires 2.14 timesteps
on average across all test images resulting in lower EDP. On
SATA, a similar trend of inference energy increase is observed
for both computation and memory access energy when the
timestep increases from 1 to 4. With DT-SNN, the total energy
cost is reduced by 46.5% compared to the standard 4-timestep
VGG9 SNN inference on CIFAR10 dataset.
Data-movement Cost Mitigation: As we discussed in Section
III-A, one of the major challenges for SNN deployment
on digital hardware platforms like SATA is the repetitive
data movement costs. We design an SNN-tailored dataflow
for SATA that can significantly reduce the repetitive data
movement cost for SNNs. In SATA’s dataflow design, we
adopt the tick-batch method [19] and maximally reuse the
weights at the PE level by having scratch-pad memories inside
every PE to hold the weights stationary [39] throughout the
PE computation process. By utilizing such a dataflow, SATA
will only read out the data once from the higher memory
hierarchies (DRAM and SRAM) to the PE array for each layer
across all timesteps. In Fig. 5 (a), we compare SATA’s SNN-
tailored dataflow with the standard output-stationary dataflow
on a VGG9 SNN on the Tiny ImageNet dataset with different
timesteps. Utilizing the SNN-tailored dataflow can save 62.5%
memory movement energy with a timestep of 4. The benefits
will increase when a larger timestep is used. Besides re-
designing the dataflow for the hardware, model compression
techniques like quantization [42]–[44] and pruning [11], [44],
[45] will also help in reducing the data movement costs.
Mitigating LIF Overhead: LIF units are energy-hungry
components on the hardware, which can take up to 61.6%
total power of the computation units [46]. This translates
to approximately 2× higher energy cost for LIF operations
compared to other operations. To mitigate the overhead of
LIF units, recent work EfficientLIF-Net [46] shares the LIF
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Fig. 6: (a) Impact of LIF-sharing on neuronal area using SpikeSim for
ResNet18 SNN on Tiny ImageNet dataset. (b) Non-ideal accuracy improve-
ment on SpikeSim for a pre-trained VGG16 SNN (4-bit weights) on Tiny
ImageNet dataset with non-ideality-aware weight-encoding & BN adaptation.

neurons across layers and channels. We use the notation of
C#n to represent the EfficientLIF-Nets that share 1 LIF
neuron for n post-synaptic neurons on the output channel
dimension. On SATA, as shown in Fig. 5 (b), we can reduce
75.1% of the power cost of LIF units by having a C#4 LIF-
sharing. Quantization of membrane potential [42] can also
help to reduce the LIF unit cost by having smaller registers
for the membrane potentials. The LIF-sharing and membrane
potential quantization methods are orthogonal techniques for
mitigating the LIF-units cost. On SpikeSim, we find that LIF
sharing with C#2 and C#4 results in 1.38× and 2.41×
reductions in LIF area, respectively, for a ResNet18 SNN on
the TinyImagenet dataset (see Fig. 6(a)).
Crossbar Non-ideality Mitigation: To address the accuracy
degradation of SNNs on non-ideal crossbars, two training-less
approaches are studied in Fig. 6(b): (1) SpikeSim supports
a non-ideality aware weight-encoding scheme on the RRAM
crossbars to increase the proportion of high resistance synapses
during SNN inference. Prior works have shown that the
impact of crossbar non-idealities decreases upon increasing
the proportion of high resistance synapses in the crossbars
[36], [47], [48]. Thus, the non-ideal SNN accuracy is improved
by 40.13%. (2) Non-ideality aware adaptation [23], [49] of
the SNN’s batchnorm (BN) parameters prior to inference can
mitigate the impact of crossbar non-idealities, specifically the
interconnect parasitics. During BN adaptation, we forward a
number of training image samples through the SNN deployed
on crossbars, adapting the moving average & variance of the
batchnorm layers with respect to noisy activations (while keep-
ing the learnable parameters or weights frozen). Consequently,
the measured accuracy loss on SpikeSim due to non-idealities
is reduced to 1.22% compared to the software baseline.

V. CONCLUSION

Our study unveils critical challenges in efficient deployment
of large-scale SNNs on hardware, highlighting discrepancies
between estimated and hardware-realistic energy-efficiency
improvements. We base our study using two state-of-the-art
hardware benchmarking tools for SNNs (SATA and SpikeSim)
which help identify and address key hardware bottlenecks such
as- repeated computations & data movements over timesteps,
LIF neuronal module overhead and SNN’s vulnerability to
crossbar non-idealities. We identify some key mitigation strate-
gies that help address the hardware overheads. The findings
from the benchmarking tools underscore the importance real-
istic hardware-aware SNN algorithm-design in the future for
driving low-power neuromorphic applications at the edge.
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